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m. BSTIMA1'B or CI.OSS SBC~K RATIO :.a~ woUld reasonably be expected from statistical 
~~UotionL 

,, "-as estimated I rom J:ig. 1 that a.t 240 days after 
.'.:~ialion the long-lived activity contributed about 

,.1 fnurth of the total gamma-count. Even if the 
.!"llical separations were only 50 percent efficient 10 
~lthil contribution was reduced £rom one-£ourtJ:t to . 
~r-f"il:htlt, it was cnlcula.ted that the counting rate 
. ,,. should change by about 20 percent in two 

.. t.ths. Tbe absence of such variations in any of the 
-« samples was considered as proof that the long­

.tot activity ·was not carried by any of the other 
:~nlJ and must therefore be auocia.ted with a 
,..~m l110tope. 
The evidence for the presence of eem consists in: 
The existence of a half-lite of greater thaD 120 days 

·~.t photon component of the irradiated cerium,.(2) 
, .;maw contributions of soft radiation corresponding 

·~·~~~~~this~:;t~~~~ 

. An estimate of the ratio of ci'OSI Jeetions ol 
(Ce111/Ce"') should now be possible from the £act 
mentioned •hove, that at 240 days after a 30-da.y 
irradiation the counting activity ol the long-lived 
gammas was one-third of that £or the short-Uved 
activity which Shepard estimated to Occur in 70 percent 
of the disintegrations of Ce141. Then, estimating the 
counting efficiency £or Ce111 radiation to be twice as 
great as that for Ce1" because of the larger fraction of 
x-rays of about 30 kev energy,• the ratio of the disin­
tegration rates 139/141 at this time would be 0.12. 
Using tbe haU~Ufe values of140 and 28 da:ys thll ratio 
would have boon I.IXIQ-4 at tha ead ol irndlation. 
For a 30-day bOQlbardment, and using the isotopic 
abwldanceo ol 0.250 and 88.48 petteD! Pvm by qbam, 
Hayden, and Hess,' the ratio of the croas sections~ 
calculated to be: o(l38)/•(loiO)MU, 

..:~cerium., by removal of the most likely impurities. 
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A I)'Btematic treatmedt. it preseated of the appticatiOD of variational priDdplel to &he quanllllll theory of 

~'::'i from t,he timc-depeDdent theory, a pair of vuiatioiW prindplel ia provided for the approdmare 
c:ak:Wation ol the llllitary (colllsloa) operator that describes the coaneetioa. betweea the haitial and lnal 
state~ of the system. AD equivaleot formW..tioa of the lhemy B obtaiaed by apraaiDc the c:oUisioD operator 
ia terms of u.Bermitlan (ra.ction) operator;variaticmalprinc:iplafor theractionopen.tor&,Dow. Thetime­
indepelldmt theory, iDcJudiDc varialioAa1 prindples for the operaton nmr uiD'I to daaibc tr&MirifM, 
emerga from the time-depmdent theory by nstrictidr the di!c:luer.la tomdonary .UI& ~.., 
tbe cua of IC&tteriag-by a central force field atabtilbes lhe conneetioo witla die conYCn..,_. pJr.r Mill 
analyais aad raulta in a variational priaeiple for the pbase shifL 

AI an illustration, the resulta of Fermi a-nd Breit an the ~eatterinc olliow nentrons by bowul protons are 
dedueed by variational melhoch. 

L INTRODUCTION 

.\ L~~cc~~:C~:=!~~al~=:~n~inh::n~:l~~ 
l~&, nosyaLcmatic usc had been mnde oi varintional 

·~ n!ures in connection witb scattering 1,~ until 
• jtC"riud l9rl2-1946 whe11 variationlll techniques; 
· • ~ utbers, were extensively employed in the solution 
•..n.lromngnelic wnve guide problema.1 Variational 

...... :.1ions have lllao been devised for the treatment 

t~:~0: ::=:1 bl~'l'8~!\c1Bt":::!. D~~~~~= 
~ . .,,,"')' KeJJOrl1 Ji'cbtwU)r INS. 
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such methods are applicable in any branch of physics In particular, 

::::::~~=;::.1 equations ca.n be derived from 'l'(ao)•.Hr(-ao), S•U+(e) (U 

It is the purpose of this paper to describe the quantum defines tnc collision operator, which generates tbtit. 
mechanical time-dependent scattering theory and its sta.te of th~ system from an arbitrary initial state. n, 
variational reformula.tion. As a. simple illustration of opera tot u +<IJ is to be obta.ined as the IDlation m Ur. 
these methods, we consider the scattering_ of slow differential equation 
neutrons by protons bound in a. molecule. This was tint 
discussed by Fermi' in terms of an equivalent potential iA(aU+(')/&]•Ha(l)U+(I) (11 =: i::c:i:~::: ~~=u~e t:=;m:~r:~m;:· ~ IUbjcct to the boundary condition 
Breit,• with quite small elliUing corrections' to Fermi's U+<-4!0)•1. (I; 
theory. We shall show that the results of Fenni and 
Breit are easily derived from a vari&tional treatment. It is also Wlef'Ul to introduce a ~nitary operator UJ 
Although one could consider, without difficulty, the. which geilerates the sta.te vector 9(i) from tie .it. 
scattering by any number of nuclei, the discussion will . state 'il'( ao ), 

~:::~ ~·..:~~~==~=~·:t:bi:.; 9'(1)-U_(I)"(~J-U-(I)Si'(-~) •. (i' 

mass. An extension to two protons, and in particular to Si~ce the .two operators are related by 

:~.:=~;:.u~=.:d!tedisina:ne:::~~ U+(')•U-(i)s 0• 
error in the para-hydrogen scattering cross seCtion the operator u _(I) is evidently the solutioo fll calcu._ted by Fermi's method. equations 

iL nM&-DBPBI<DE!iT SCATTERING THEORY iA[8U-(4/at]-H,(4U-(4, U-(•)-1. (l.t 

We are concerned with the development in time of 
a systetD. consisting of two inter&Ct.ing parts, which arc 
such that the interaction energy approaches zero as the 
two parts are separated spatially. Correspondingly, the 
Hamiltonian is decomposed into the unperturbed 
Hamiltonian Ho, describing the two independent parts, 
and H 1, the energy of interaction. Since the problem is 
to describe the effect of H 1, it is convenient to remove 
the time dependence associated with Ho from the 
Schrodinger equation 

iA[W(Qiat]-(Ho+H,) ... (I). (1.1) 

This is accomplished by tbe .... itaty transformation 

... (4-exp(-IHol/1)9{4 (1.2) 

which yielda 

iA[B .. (I)/BI]=H,11)9'(1), (I.J) 
H,(l)-exp(IH.!./A)H,exp(:...IHoi/A). 

The initially non·interacting parts of the system are 
charactcriv.cd by tho sta.te vce~or '1'(- ao ). On following 
the course of U1e interaction a.nd U1e eventual separation 
of the two pa.rl&, wC are led to the state vector it(+ao ), 
representing the final state of the system. This ru:. 
scription can be made independent of the pa.rticula.r 
initiDlst.nte by regarding the time development as the 
unfolding of a unita.ry tmnsforms.lion: 

.. (I)-U+(4'1'(-~), U++(<)U+(I)-1. (U) 

• E. Fermi,·Riccrca Selent. VII-U, 13 (1936). 
1 G. Breit, P'fil Rev. 71, 215 (194~ 

Zi~ !:'~>:u!·~ ZO::V~76 <i~h.232 (IMP>; BNft. 

Furthermore, 

U-(-·~)-s-• (1.1 

which is the operator generating the initial stale wr. 
from the final state vector. 

Tbe dillerential equation for U +<4 can be 
by the iategral equation 

U+(l)-1-(i/l)J' H,(()U+(()U 

- (1. 

-1-(i/l) J~ 9(1-f)H,(()U+(I')II 

wbich incorponlel the boundaiY .....Utiob (1.1). 

•<•-():~; :~~: (U 

Similarly, U-(j) obeys the iategralequatioa 

(1.\ 

-l+(i.l/)[ UU,(I")U_(I~,(f-1). 

By considering the Jimit as ,_,. in (1.12) aod ,_ 
In (1.14), ... obtain 

s-1-(1/A>J." u,mu.(<)dl IL' 



I VARIATIONAL 

s-•-l+(jfh) I~ H,(()U_(I)dl (1.16) 

1 ~ arc, of course, connected by (1.9). 
~ differential and integml equations charac­
;~ u.<•> and u -<•> will now be replaced by equiva­
~· \-anational princi1llcs trom which the fundamental 

, _11ions are obtained as conditions expressing the 
•. tlllf)' property of a suitable expression. Further~ 
",the atation=1JY value of this quantity is just S, the 
· • .;on operator. Hence the variational formulation 

, ,~ problem aloo yieldo • practical meona of ap­
.. 'I .. :Tllte calculation, Iince errors in the constru.ctioD 
· • •ill be minimized. by employing a stationazy n:· ...... 
,,Arst consider 

sr.<~>~ I~ u_+(l)(~iH,(I))u.(t)dl, (1.17) 

, •. is regarded as a function of the operator U +(1), 
.,;t only to the restriction (1.7), and of the Jler.. 
., conjupte of the arbitrary operator U-(1). The· 

• -=tt induced in ~S' by small, independent, variationa 
•.• andU-is 

~!1-U-(,o>))+W+("') 

-J" au_•(I)(~~H,(I))u.(f)dl 
-· Ill It 

"[ a . ) ]• + i. (a.+iH,(I) U-(1) &U+(I)dl. (1.18) 

illircment that 'S' be stationary with respect to 
'll)' \-ariations of cr + and (7...., apart from the 

·. ~tiM (l.i), thus leads to the ditrerential equations 
ti.IO) and the boundary condition (1.10) for 
It is also evident from (1.17) that the stationary 

· ,. flf 'S' is the collision operator S, according to 
· .\ 10mewhat more symmetrical veniori of (1.17) ia 

~,u.<~l+U-•(-.,)) 

f_"[' au.({) 1 au_+<(() 
- - iu-•(1)--;;;--i-at-u.(() 

+iU-+({JH0(1)U.(I)}' (1.19) 

IOtherestrictions 

u.<-~>-u-<~J-1. (1.20) 

'""li.l)· \'erifitd that'S is atationrny with respect to 
• •<ItS ol u+ and u_ about the eolulions of the 
~•iol oquationo (1.6) and (1.10), oubject to the 

1· · . ...,. condition• (1.20), and· that the stationary 
•.J'S'isS. 
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A variational bouia for the intesral equations (1.11) 
and (1,14) is provided by the ""P'"''ion 

'S'•l-~ J" [U-+(I)H,(I)+Ho(I)U+(()}/1 
A -• 

+~ f_" U-+(1)11 0(1)U +(l)dl 
h -

+(~)'f_" J" U_+(()Ho(()•(l-() 
A --

XH,(()U..I/)dldl. (1.11) 

I'S'-~ f_~ dlau_•(I)B,(I)[u.<()-1 . -
+~ J" ,(1-()H,(f)U.(t)dl] 

h -

+~f_" .[ u_(()-1-~J" tltH,(I? 

•-"1 ·-
XU-((),(1'-() rHo(I)IU.(I), (1.22) 

which is indeed zero if U +and U _ satisfy their defining 
integral equations. It is also evident tbat the stationary 
value of 'S' is jdlt the collision operator, in the form 
(1.15), 

T1)is variational principle differs ftom (1.17), or 
(1.19), in that no restrictions are imposed on U + and 
U..., and that'eo.-ery integral contains the interaction 
opemtor a,. Tbe latter property implies that an ade­
quate approsimatioD. to l'+ and t~ _ is requiml oafy 
during the actual proces1 of interaction. Furthumort-. 
the second type of' variational principle will yield moft' 
accu.rate results than the fint if the ~ame.approxima.te­
open.tors u+ and u_ are employed. This is indicated 
by the results of inserting the·simple but crude approzi-. 
~lion 

(1.2J) 

in (1.17) and (1.21). The former yields 

S<>d-(i!llf~ H,(!)dl (UI) 

which is equivalent to the first Born appros.imatioa:. 
while(l.21)gi ... 

S""l-(i/A) ( H,(()dl+(('l)'ff Ho(l) 

X•(I-()H,(,()dltlt (1.25) 

the ...,.J Born approximation. 
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Th\.>sc approximate expressions for S illustra.te a di~ by 
;advantage of the variational principles lhus far d!a- 1 • [ { a 
cuued; the unitary property ia not guaranteed for .an tK'•-:-:.l_ av+(t) t"';-1-a~co)v<l) inexact S. It follows from (1.24), for example, that ,. ., 

(1.26) +[ ( ~~-H,(I)) V(l) r IV(I) f 
A version of the theory that meets this objection il 
tdbined un teplacing the unitary operaton. U,.(l) and 
U.(Jj!Jy 

V(l)- C/ +(1)2/(I+S)- C/ _(1)2/(1+.5'-'). (1.27) 

Note that 

V(-.,)-2/(I+S); 
(1.28) V(.,)-2/(1+s->)-2S/(1+S), 

whence 

l(V(.,)+V(-.,))-1 (1.29) 

... d 

V(.,)•V+(-.,). (1.30) 

The· property (1.29) leads ua to write 

V(.,)-1-liK; V(-oo)-1+l1K (1.31) 

while (1.30) supplies the infonnati~ 

K+-K (1.32) 

the so--called reaction operator K ia Hermitian. On 
remarking that 

S-V(oo)/V(-"') (1.33) 

·we obtain 

s-(1-liKl/(l+liKl (1.34) 

which n:prcscnlR the unitary S in terms of the Her­
mitian K. We shall now construct a. variational prin­
ciple for K in which the Heniiitj.an property it ueured. 

Conlider th~ operator 'K', defined by 

; 1. ( av(l) av•(l) ) 'K'--- v•ro-----V(I) .u 
2 - at iJI 

11" +- V+(t)ll,(I)V(I).U 
h -· 

I 
+zC<V(oo)-V(-.,)) 

-(V+(.,)-V+(-"'))J (1.35) 

which is evidently HCrmitia.n for albitrary V(l). The 
~ft'ect of a. ama.ll v&riation in V(O and v+tt) is indicated 

-~(V+(oo)-V+(-.,))a(V(oo)+;(-•)) 

( v•<•l+V"<"' ... > ) 
+ 2 -1 I(V(oo)-V(-•)) 

(
V+(oo)+V+(-oo)) 

-1 2 (V(oo)-V(-•)) 

-'I(V+(oo)-V+(-.,)) 

( V(oo)+V(-"') )] 
X 2 -1 . II 

U, therefore, Y(l) is restricted by the mind ho!!r. 
condition (1.29), 'K' il stationary with fllll«! 
variations about the solution of the dl&'erendaltq~~o 

(•~-H·<~ )v<•>-o 
and the stationary value of 'K' equals K, ~r. 
(1.31) and (1.32). 

Tho integral equation oatmfied by V(l) can ~ 
atruct.ed from that obeyed by U +(1), or direct~· i 
.folloWiag manner. Oa. integrating the difterentialr 
tion (1.37) from - ao to I, and from ao to I, wul: 

V(I)-V(-'")-~ r H,(f)V(f)df, 
h-

V(I)•V(oo)+~f· • H,(f)V(f)dl 
A ' 

The addition of thae equationl yields, in 
of the boundary condition (1.29), 

where 

V(I)-1-.!_J" o(l-f)H,(f)V(I')df <: 
2A-

t'(l-l'}•lj l>l'. 

--1; 1<(. 

Conversely, the differential equation and bou• 
dition obeyed by V(l) can be deduced flom lhc "' 
equation. Note also that 

K-i(V(oo)-V(-.,))-~ f" H,(I)VQ)dl. ·· .J_ . 
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\ \·aria.tional principal !orn1ulation of this integral 
<:J..l:ion is provided by the expression .: r (Ho(I)V(I)+V+(I)II,(I))dl 
I-

If_" -- V+(I)H,(I)V(I)dl 
h -· 

_.!__ J" J" V+(l)lio(l)o(l-l')lio(l') 
2h' -• - X V(l')dldl' (1.42) 

•1ll h is obviously Hermitian !or arbitrary V(l). Now 

'JI .. -~ J~ ;v+(I)H,(I>[ V(l)-1 

+_!_ J" •(1-I')H,(I')V(I')dl'l" 
2h - j 

_: J" [v<l)-1+~ J" •(1-I')H,(t) 
h - 2h -

X V(l')dt']+H,(I)W(I)dl (1.4.3) 

. ,!!~indeed zero if V(l) satisfies the integral equation 
1-> ·•·. furthermore, the stationary value of 'K' is just 

.: , the correct reactor operator. 

~~ • =~~~~~~:~~t~7r~~ci:5g ~~=:~::.~o~~: 
•. 'l.lcd parts of the system, which wiU describe the 

..; l!ld final states. Thus, since s~. is the final state 
~rgies from the initial state ~ .. the probability 

~··· ...: I!!~ system will be found e\-entually in the par­
.• Jistate4>6,is 
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It should be noted that "'• cannot be an exact eigen­
function of 110, since a superposition of momentum 
states (wave packet) is required to produce the spatial 
localizability involved in the definite separation of the 
two parts of the system. An equivalent description is 
obtained, however, by introducing eigenfunctions of 1/o, 

(1.49) 

and simulating the cessation of interaction, arising from 
the separation of the component parts of the system, 
by an adiabatic decrease in the interaction strength as 
t-±eo. The latter ean be represented by the factor 
exp(-•lli/A) where • is arbitrarily small. Accordlngty, 
(1.48) becomes 

(1.50) 

where 

... <+>(E)'-f~ dl exp(i(E-Ho)l/h) 

Xexp(-oiii/A)U+(I)~.. (1.51) 

Fonnula (1.16) for S-1-1- T+ leada, in a similar way, 
to 

(T+) .. = (;/A)( .. ,, H, .. ,<->(Eo)) (1.52) 

or equivalently, 

T .,~ -(i/A)( .. ,<->(E.), H,~,) (I.SJ) 

in which 

.. ,<->(E)= f~ dl exp(i(E-H,)I/A) 

Xexp(-•111/A)U_(I)... (l..>l) 

(1.44) Determining equations for 'li'.<+>(E) and· 'i".<->(E) 

It 1 • .:ightly more convenient to deal with the operator =:a~.:bi::OE!c!)=d <t:?,).a~u~1 ·14), the integral 

T=S-1, (1.45) 

·.~g~nerates the change in thestatevectorproduced "'~'•(+)(E)• J~ t#exp(i(E-E.)J/A) exp(-•111/A)+. 

1..,. :. -~~~;action process. The unitary property of S 

T+T=-(T+T+) (1.46) 

·· ·:.t probability that the system will be found in a 
· ~ :.~!.&r final state differing !rom the initial one is 

!"•• w .. -1 T .. l•. (1.47) 

• . .ccording to (1.15), 

0.. •-(;/A) L: di(+.,H,(I)U.W>J, 

-a-(i/h)J• d#(~~o,exp(iiiol/h)//, 
- Xexp(-iH~fh)U.(I)~.). (1.48) 

-(i/11) f" dTexp(i(E-Ho)T/h) . 
Xexp(-u/A)H, .. ,<+>(E) (1.55) 

and 

.. ,<->(E)• f" dlexp(i(E-E,)I/A) exp(-•111/A)<Io, 

+(;fA) f." dT exp(-i(E-H,)T/A) 

Xexp(-u/h)H,.,,H(E), (1.56) 
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1\'hcre r•ll-t'!. Now 

T~ f.• dT exp(=J:i(E-Ho)Tfh) exp{-•T/h) 
h • 

1 E-110 1 
---------..,.-=Fl---­

E=J:it-Ho (E-110)1+•1 (E-H0)1+rt 

1 
=P E-ll,'f'ir,(E-ll,). (1.57) 

The laat expresaion ia a aymbolic statem~t of the fol· 
lowing integral properties possessed by the real and 
imaginary parts of (1.57) in the limit as E-f(). 

f . • J" /(•) Lim --;JI•)d•= P '--dz,. 
..... o -.x'+• - s 

If" ' Lim- --;JI•)d•= /(0), 
-o .. -.x•+· 

(1.58) 

where P denotes the principal part of the integral and 
f(x) iS: an arbitrary function. Therefore 

and, on writing 

we obtain 

where 

'R'.<:~:~-2rli8(E-E.)~.<=H 

I 
~.!:i:l-+.+---H,~.<:i:l, 

E .. =l:ie-IIo 

T,.,-.-2-ri&(E.-E~)T,., 

r~ .. - <<~>~, rJ,v .. <+>)-(<I~,<->, 111+.) 

(1.60) 

(1.61) 

(1.62). 

(1.6.1) 

arc e<juivnlent forms for an element of the association 
mt\lrix 1', which is dcfmcd only {or states of equal 
cncrs,ry. The resulting fonnula for the transition prob· 
ability, 

&(E.-F-o)•~ f_" oxp{i/(E.-£,)1//•) 2,.,, -· 
Xcxp(-•111/h)d/; -oO (1.65) 

in which E.-E~ must b~ placed equal to zero, ill\') 
of the second delta·funct1on factor. The expfesSioa fr 
obtained 

2r f_" w..,--cl(E.-E&)!T .. !' dt, 
h -· 

(h 

evidently describes the fact that transitions occurrr l 

be~ween states of equal energy for the separated syr ... 
and with an intensity proportional to the totalti~ 
effective interaction. In the idealized limit t-tO . 
latter is infinitely large. However, we infer from (i 1 

~t th~ rate at which the tranaition prob&bility: 
creaaea 11 

w .. •(2r/A),(E.-E,)IT .. I'. (I· 

A somewhat more satisfactory derivation ol , 
result follows from the evaluation of 

a 
.... =-ll<ioo, u.(I)•.JI' II· •• 

which expresses the increase, per unit time, d 
probability that the system, known to be inilialh 
the state a, will be found at time l in lhe state I.\ 

X(+" U+(l)+.)+eomplex conjugate 

1 ' ·-f dl'(exp(i/(E,-H0)1/h)U+(I) ... ,B,+. 
A' -

X( .. ,, H, exp(i(E,-H,)I'/A) 

XU +(t)+.)+c.c. i~ 

imply that 

exp(-U/~/h)U+(I)•.•exp(-;EJ/A)~.'" 

which is just the state vector, in the Schriidingn 
aentation, of our idealized stationary state. lit~~~• 

A simple cxprcMion for the total rate of ~~· 
from tho initin.lstntc follows from the general,.,.· 
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. ·~e onerator T contained in (1.46). On l\'riting a 
•. ::itd~ment :'f this operator relation and substituting 

~ 1 ,, we obtatn 

~,!(E.-&JT:;?;;;,;;~i.i'(r •• -r •• •J. (1.1JJ 

. ~ bctor &(E.-E.) can be canceled and (1.73) then 
~ ... !-.(or the special situa~ion, c-a, 

,,I;,!(E,-E,)IT,,I'•-4•/m(T.,) (1.74) 

I;,w.,--(2/h)/m(T,,). (1.15) 

• 'eft side of this formula is not exactly the total rate 
.• ~~ition out of the state a, since b-a is included in 

, ... mmation. However, a single state makes no con­
'• ~ion to such a summation; a group of states is 
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where E is the common energy of states IJ and l. w~ 
shall verify directly that (1.78) has the required ptOPtf"" 
ties. Thus 

f'T' .. - (''~"·<->, a,( ... +--1-Hiit.<+l 
E+U-H, 

-'i',<+>))+((•·+--.~-/l,'t',<-> 
E-u-Ho 

-•·<-> ). H1a't.<+>) (1.79) 

which is indeed zero for variations about the solutions 
of (1.61). Furthermore, it is a consequence of the latter 
equations that 

('1'6<->, H 1'11t.<+l)- ('¥6(-l, H 1--1-H1'1!.<+>) 
E+ie-H, 

- ('¥6<->, H 1<1>.)- (<~>•, H i'i' .<+>) (1.80) 

~ .:nl. A relation of the type (75) is characterist~c 
, • 1 ,·e theory, in which the reduction in intensity of 
~,e wave passing through a scattering medium is 
.. ~ted lor by destructiv ~nterference between the 

-:·.ll wave and the secondary waves scattered in the 
:~10n of propagation. so that the stationary value of 'T'._ is T..,, according to 
\ , 1riational formulation of Eq. (1.61) by means of (1.63) . 

..... 

.•. :.onary expression forT ... can be obtained from the · A similar theory can be developed for the matrix 
, ~:ional principle (1.21). A matrix element of this elements of the operator K. It is easily shown that 
:"Jowr equation reads K, •• 2d(E..-&)K..., (1.81) 

1,..-~ J" dl[(exp(i(E,-00)1/h)U-(1)4>0, H,il>,) 
'" " -· 
-+(t., 11, e.p(i(Eo-llo)l/h) U +(1)4>,)) 

'i' - dl(exp(-i/1~/h)U_(I)il>,, 

\ -· 
XH,exp(-iH~/A)U+(I)il>,) 

.. (;)'I: dlf_~ dl'(e .. cp(-iHol/h)U_(I)il>• 

,.llcup(-iHo(t-t')/h) 

XH1 exp(-illol'/h)U+(l')<I>.) (1.76) 

· ' b the adiabatic redllction of H 1 for large ltl has 
~indicated explicitly. We now restrict ourselves 

· :(' dass of- stationary states, according to the 

where 

K..=(Wt,Hiito<0)=(11'•{1) 1 HI~a). (1.82) 

The time-independent state vector 'V.m describes a 
atatlonary &tate, according to the relation 

exp(-iHol/h)V(I) ... -exp(-iEJ/h)'i',«> (I.BJ) 

and obeys the equation 

.q,.m-~.+P(-1-)H,v.m. (1.84) 
E,.-B, 

A variational basis for (1.82) and (1.84) is provided by 

~K'ta•'K'a•*'l!l. ('l'a<u, Harfl.) 

+(<l>~,//,it,.Ul)-(+.<U,!J,i'.(l)) 

+( v,<•>,u,P(E~H.)H,'I',!"). (1.85) 

The connection between the matrices T and K is 
obtained from 

T-S-1--iK/(!+jiK) (1.86) 

on rewriting the latter as 

T+jiKT- -iK. (1.81) 

Non·vaniahing matrix elements of this operator relation 
are restricted to atates of equal energy, according to 
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(I.C\1) and (J.Sl), when~ 

r,.+ir E. K .. •(E.-E)Tn• K... (l.88) 

where 1!. is the common energy states a and b. An effec­
tive way to solve this equation is to construct the•lgen· 
{unci ions of K, which are defined by the eigenvalue 
equation 

E. K,,,(B.-E)f,.-K,fu. (1.89) 

Since K is an Hermitian matrix, the eigenvalues K ... 
are real, the eigenfunctions f..., are orthogonal, and may 
be normalilred according to 

E.J .. ••(E,-E)J,.-1... (1.90) 

The matrix elements of K can be exhibited in tenns of 
the eigenfunctions and eigenvalues of K 

K .. =E..afuKA/•A•· (1,91) 

Equation (1.88) for T will then be satisfied by 

Tn• I: ... /u T;J .... •, (1.92) 

where 
T ... +i,...K ... T ... -K... (1.93) 

T,- K,((l+irK,). (1.94) 

This is only to sa.y that Tis a function of K and there­
fore possesses the same eigenfunctions, while its eigen· 
vulue11 are determined by those of K. These eigenvalues 
tim l.,e conveniently exJirCssed by introducing the real 
t1.t1S(I"" !A, W.f'.llftling f.t, 

K,•-(1/ .. ) ... 6, (1.95) 

propagation vectors that define the initial ;,r111 1 

states. It may be inferred that the f,,1 are sp~:; 
harmonics, considered as a function of the angles: 
define the direction of k., 

J-"•CYr(k,)i A•l,m, (1_;., 

and that the eigenvalues of K depend only 11pn11. 
order of the spherical harmonics, i.e., '"•a1• Tbet: 
stant C ~ fixed by lhe normalizatiQR convention 
tained in (1.90) 1 which now reads, 

ICi'f Yo•'{k)Yo·•'(k)pdO•Iu·'-·· (I' 

Here pdO is the number of states, per unit energy 11 

associated with motion within the solid angle dll:' 
occurs as a. weight factor in a summation over 1~ 
with equal energy, replacing the summation 0\l' 

states as restricted by the factor I(E.-E). &ph-

p'dp I i' 

p= 8,...Sh1dE .... S...'h -;• (I' 

if we consider a unit spatial volume. The second· 
in (1.102) expresses p in terms of the wave num'. 
and v, the speed of the particle. With spherial 
monies that are normalized on a unit sphere {I 

requires that 

ICI'~ l/p-8r'A•/k'. 

We may now ~mpute from (1.97) the probl! 
per unit time, that the particle is scattered fM" 
directif.ln of k. into the solid angle dQ around tM' 
tion o( k,, 

(1.96) w•(2/rh)iE •ina¢••1CI'Yo•(k,)Y,•'(k,)i'pdn 

The resulting expression for the transition probability 
per unit lime is 

w...- (2/'ll'"h)!I:.t sincl"e11A/u/.A*j 10(E.-&) (1.97) 

and the total probability per unit time for transitions 
from a particular state is given by 

(1.98) 

,. 

We then obtain the well-known expression of 1!. 
Cerential cross section for scattering through an·~ 

<k(•)• (l/k')IEo(21+1) sin!oe••Po(""")i'dD (! 

on dividing w by "• which measures the flux ol ~ 
particles, and employing the spherical hannorOO • 
tion theorem, according to (1.97) or (1.75). Finally, the sum of the 

total transition probability per unit time over all 
Initial states of the same energy is expressed by /: .. , Yo•(k,)Y1•"(k,)~ [(21+ l)/4r)Po(-), ,. 

(1.99) 

These results are gCneralizations o£ familiar formulas 
obtained in the conventional phase shift analysis of the 
scattering of a particle by a central field of force. In 
the latter situation, the eigen.functions of K are evident 
from symmetry considerations, namely the invariance 
of K" ualder a simultaneous rotation of k. and k., the 

where the Legendre polynomial P1(c::os") is a k 
of fJ, the angle between k. and k •. The total 111'1' 

cross section is obtained from (1.98), 

•• (2/rA•>E sin'loiCI'I Y,•(k.>l' ,. 



I ..-:;tqUtnce of 'l l:•i1',•(k.)j'-(ll+1)/~r. (1.108) 

, :n~ 1ot.al 0\)$$ S«tion iJ; indcptndent of the 
1 , ~ c 1hrtetion, thee same result follows immediately 

• !99). 
• • 1 1 1uns1der finally, the variational formulation o( 

•·~ .~ po$SCSSmg the general character of the scat-, '" f . !•\' a central Coree field; namely, those in which 
··;~functions oi K are determined by syntmetry 
, <:""Jtions, .and the b.1.sic question is to obtain thee 

b r •. ~:~h!;-~~ t~:~~as;,{(f.l~r~ For this purpose, 

.,,, ,.,.fp'!(E,-E)K..j,,o(E,-E)- K,;... (1.109) 

·~ . .tudng the state vectors 

l:. ~.J.,o(E,-EJ=~ •• 

~. "iff.m/ .... O(E.-E)-'1! ... ul, 

(1.110) 

(1.111) 

1: ~ -~"'ltional principle (1.85) beeomes 

''· II 

II 

+(4>s1 Hli'Am)-(ifs<u, Hlif"A(U) 

+( Vs<U,HtP(E~HJH1ifAUl). (1.112) 

.• ·.at •1',~, or more exactly written <J!A,B, has the 
••• ;;< orthogonality-nonnaliz.ation property: 

(<# ,.,+u)='F:.,f,,'o(E,-E)f.so(E,-E') 

[1: 

'" ,,. 

- !(E-E')'F:..j,,•o(E,-E)J,s 

-;,.;(£-E) (1.113) 

· .. tthe inverses of (1.110), (1.111) are 

•.,-I:,~ /..t•<fl ... , i'.m•.E ... / .... •i! ... (l) (1.114) 

tr.iRON SCATTERING BY A BOUND PROTON 

• ~, application of the variational methods dis­
! ;l the first section, we consider the scattering of 

ll: ~~~7£":h~y .:o~:~;~:::::t:; :~!i~~~s:;~~:! 
.•.ty of the whole system is assumed to be zero, 

u•• nturbed Ham1ltoninn consists of two parts, one 
•!'• l ~ 1 the ftlative m,otion of the neutron and the 

•.at center of gravtty, the other being the Hamil­
..llhe mternal molecular motion, 

IJ,-(p,'/2•l+ll.. (2.1) 

'1 ' ••AM/(A+l) (2.2) 

iis the redu'-'\."d lll:l.5 Nr relatiVe mutibn o£ th.: tttrutrun 
.and mot~-ule, whilte .{ is thte tnt.l\\'\"Uill.r n\115& in unib 
of .\f, the m:lS:$ of the nt~utron. The }X".rturba.tiun. is the 
neutron--proton intc.ractioo e.nl'J"K'\ 

(Z.J) 

which also depends upon the spin operators of neutron 
and proton, o-., and cr.,. The simplifying feature in this 
problem arises from the short range and large magnitude 
o( the nuclear potential contrasted with the long range, 
weak molecular forca The \""ariational principle (I. iS) 
requires a knowledge o( the wa\-e function representing 
the state \·ector only \\ithin .the region of nuclear inter~ 
action, where the molecular force on thee proton is 
negligible. Thus, the basic Jfroblem is the scattering o( 
a neutron by a free proton, with essentially zero energy 
o( relative mOtion. We therelore first consider some 
properties of the latter system. 

The unperturbed Hamiltonian for a neutron and a 
free proton, in the system in which the center of gravity 
is at rest, is 

(2.4) 

where p is the relative momentum o( the particles. If we 
temporarily omit the spin coordinates, the wave func­
tion ,.,, representing the unperturbed state vector w., is 
simply a constant in the limit of .zero energy. This con­
stant can be chosen as unity, corresponding to a unit 
spatial volume. The wave function representing the 
sta.te vectors 'i'.<+l and '1'.<-l will be denoted by >J-(r). 
There is no distinction between outgoing and incoming 
waves in the limit of zero energy. Since the scattering 
is necessarily isotropic, T._ is simply a constant, denoted 
by t. According to {1.63), tis given by 

t=(~. V~)-J V(r)~(r)dr, (2.5) 

where 1/1 obeys the integral equation (1.61). 

H(1/X.)Vt·~· (2.6) 

Thee connection between t and the S phase shift is ob­
tained from (1.92) and (1.96), 

t= -l!l'ko/T, (2.7) 

in which we have employed the :z:ero energy limiting 
form, 

sinf-+ka; k-o (2.8) 

thereby introducing the scattering amplitude IJ, The 
constant/is fixed by the normalization condition (1.90), 

I! I ..... 1 (2.9) 
where, (1.102), 

4•p=k'/2<'~'-kM/4•W. (2.to) 

The second Corm of (2.10) follows from Ak•}Mr, the 
relation between the relative momentum and the 
relative velocity. Finally, 

I• -4d'a/&f. (l.ll) 
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If the neutron-proton interaction operator ia spin- A aecond approximation involvea the last~ 
d'-1lCildt'nt, t must be replaced by a ma.Lrb: in the spin (2,1~, which ia amall in comparison. whb ~ ~.~ 
quantum nuntbcn: The eigenfunctions of this spin terms. Iince molecular energies are negligible iD . 
matrix arc those of the triplet and singlet 1tata of parisqn with the practically equal kinetic ~ 
resultant spin angular momentum. The aiiiOCiated neutron and proton during the nuclear intcn. 
eiKt~walues of t arc related to the triplet and ainglet proceu. If we initially ignore the last term of (1U 
IC.I.ttering amplitudes, latter mula , 

lu•-411'Aiau/.M. {2.12) 'T' .. •('t',<-J, VF.)+(Ph v-..c+J) 
J\11 in (1.92), the matrix t can be constructed as a linear { 1 
wmloinillitJn r,fitseiJccmvaluca, multipliedbyaJCffidcnll -('I',H, V'i'.C+))- 9,(-)1 V:;;:Y•.'•')· 1; 
which arc tile ma.trix elements ol JII'Ojection opera.tora -. 

~r~:rs cfr:r~~;fet ci!:~~e:t '!:tea~= The condition that 'T' .. be staticmaey is thai t 
known to be 11.tiafy the rdatioa. 

P,•l(l+o.·o,}l Po=l(l-o.·o,). (2.t3) 9.'"+(1f,JC,)Vt-.<•••P.(r). 

Hence, to include spin dependent intera.etions it is On compariaon with (2.6), it is evident that 
eufficient to regard tin (2.11) as_ a spin operator, with 'l'.c:t:J="'(r.-r.)F.(r) 

G•4tPt+a,Po=-i(3st+do)+l(a,-~~o)cr.·•·· (2.14) 

We aball now perform an approximate but hishJy 
accurate evaluation of T.., which describel the, scat-· 
teri~g of a neutron by a bound proton. For this purpose, 
(1.78) is written 

'T' .. -('It,t-1, V~.)+(!ll,, V'lt.t+l) 

-(+"•<->, V-+.<H)-( ')'.t-1, V~V-+.<+J) 

+('~~'•'-', v(~!._)v'~'·'+'). (2.ts) 
E+u-H, GCo 

In treating the spin dependent interactions, it is con­
venient to suppress spin functions and thus regard Tu 
as a spin operator. The first approximation to be 
introduced concerns the wave function represeating the 
state vector !II., say tt.(r.,, -'. Here r,. is the neutron 
coordinate relative to the molecular center of gravity, 
while r symbolizes the set of iDtema.l molecular coor­
dinates, including '•• the proton position vector rela.tive 
to the molecular center of gravity. This wave function, 
dacribing the independent JDOUon of the neutron and 
molecule, will have the form 

~.(r., r)•exp(ik,·r,J·x.(r) (2.16) 

·and the stationary value of '1" .. , an approajmat, 
the correct T .. , is siven by 

T~(F., V'f',.t+I)•(F., V"'F.) 

is the Fermi approximatioD . 
. TO include the last term iD. (2.1.5), we ohlem! 

may be written, in terms af wave functions, u 

J 't',H•(r.., r)V(r.-r.) 

x(•···l~_l_jr:,r)vcr.'-r,1 
.E+tt-He. 3Ce 

X'lt,.t+l(r.', r')drflllrdr.'4r'. 

We shall again introduce an approximatioa • 
exploits the lhort range of V in comparilua 
molecular dimensions, namely, the replacementd 
by 

in which x.(r) is an inte"mal molecular wave function. 
Now tt.(r,., r) in (2.1S), only occurs multiplied by the 
short range nuclear potential V(r.-r..). Welhall there­
fore replace 4'.(r11, r) by 

ot>.(r., r)•P.(r). (2.17) J '1>,<->"(r., r)V(r.-r,.)K<+>(r, r')V(r.'-r,1 

The error thereby incurred ia of the order ( .. r0)11 when: X9.C+I(r.', r')drr!lrrlr.'~r'. 
ro is a mcuurc of the nuclear force range. Since the where 
influence of moleculAr bindina: ia only of interest for slow { I I I I ) 
neutrons, .(.,,)':::'to-o, and we need not introduce a K'*,(r, r')• r.,l' -+- ~"•'• ~ . 
correction to compensate for this replacement. E:i:lt-Ho 3Ce 
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't cond1tions that 'T' .. be stationary a.re then ex-

r,..dby 

··+~V-t."'•F.(rl+ f K<.,(r, r') 

X V(r,,'-r,.')'i'.t:l:>(r.,', r')dr,,'dr' (2.26) 

,;Jt, in virtue of (2.5) and (2.6), 1mply that 

it,.':U-=Y,(r,.-r,.)G.I:i:J(r) (2.27) 

• ~dtG•I:i:>(r) obeys ~e integral equation 

G.'"(r)-tJ K<.,(r, r')G.<<>(r')dr'-F.(r). (2.28) 

iis a generalization of the integral equation obtained 
.Breit. 
:bt stationary value of 'T' N is given by 

T~(F&, vv.«+>)-tf F••(r)G.I+>(r)dr. (2.29) 

"tmlegral equation for a.<+>(r) can be solved by suc­
.... ,'t substitutions, 

."'<•l•F.(r)+tJ K<+>(r, r')F.(r')dr' 

+t2f K<+>(r, r')K<+>(r', r") 

XF.(r'')dr'dr''+ .. ·, (2.30) 

, rh is evidently a power series expansion in a/1, 
, ~ l is a characteristic molecular dimension. Since 
. -.w-a, the series converges rapidly and it is quite 
• '--ltnt to :etain only the first term beyond F.(r) to 

Ulan accurate estimate of the correction to Fermi's 
. · tolimation. Therefore, 

'tf F,•(r)F.,(r)dr+t'J F.*(r)KC+)(r, r')F.(r') 

Xdrdr'. (2.31) 

,. 1otutruct xc·H(r, r'), we observe that 

r,---r.,.',r' I I I ) 
'IIHie-llo 

J dk 
c!: -cxp(ik·r~)·x..,(r) 

1 (2r)1 

I 
X-::--::-::-:..,.-:--:::: 

E+i•- {1~2k2/2p.)-w T 

xexp( -ik· r,.')x.., *(r'). (2.32) 
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In the secqnd version, the summation over the states 
of the system moleeule plus free neutron is explicitly 
per£ormed over the independent states of the molecule 
and of the neUtron. For the evaluation of the corre-­
sponding matrix element of 1/:JCo, it must be realiud 
that the latter operator refert to the relative motion of 
neutron and proton only. Thus 

( r., •J_:_Jr.', r)-J~•xp(ik·(r.-r./ !!..._) 
3Co (2 ... )' \, ••• 

Xexp(ik·(r,.'-r,.')) 

( r,.+r,. r .. '+r,/) 
XI - 2---2- l(s-s'), (2.33) 

where 1 symbolizea the set of jnternal molecular coor· 
dinates, omitting r,.. We are actually interested in 
(2.JJ) as r,.-r,. and r,.'-r,.'. In this limit, c1(r .. +r,./2 
-r,.'+r,.'/2) becomes c1(r,.-r/) and we may employ 
the completeness relation for the molecular eigen­
functions, 

c1(r ,.- r/)c1(a-s')- c1(r- r')- I:v x..,(r)x, •(r'). (2.34) 

One ca.n now combine (2.32) and (2.JJ) to form 

f dk 
KC+)(r, r')-E -exp{ik·r,)x,(r) 

' (2•)' 

x[ 1 +-~-] 
E+it-(I•'IN'lp.)-JV, (h'II'/M) 

Xexp(-ik·r,.')x..,*(r') 

M f dk =-E -exp(ik·(r,.-r,') 
/12 "' (2r)1 

Here 

k,'- (2,./h~(E-IV,) (2.36) 

and 11 ... (2~/n-2).:: •• The k integration in (2.35) involves 
the well·known in~cgrals 

f Jk .cxp(ik·(r,.-r .. ')) • e:tp(i.t..,lr .. -r.,'i) (2.Jj) 

(2 ... )1 k'-k..,2-i'J 4r!r.,-r.,'l 

and 

f dk exp(ik·(r,.-r,.')) 1 
(2•)' -'-'---':.,:.__=-4-·-1 .-.--•• -.1' (2.3S) 
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where 

( l. )' k,.•+ -(E-W,) i ,,, W.,.<E 

lhc propagating or nttcnuatin~ natui-e of the spherical 
wave corresponding to whether or not the excitation of 
the molecular state 'Y is energetically possible. Finally, 
then 

and 

x2,~.~exp(ik.,]r,.-r,/j)-1 (2.40) 

M ]r,.-r,.'j 

T~-4:talJ F,•(r)Fo(r)dr 

+a.~ J F.•(rh:.,.(r)x., •(r') 

(2~J./M) exp{ik,] r,.-ri''J)-1 ] 
X F.(r')drdr' . (2.41) 

Jr,.-r,.'J 
The rulio 2,~.~/M ranges from unity, referring to a free 

1•roton1 to 2, which applies to a. proton bound in an 

infinitely heavy molecule. Our results for the$ttj 
tions are in agreement with those of Breit. In partir_1 
lor a. free proton k.,.•k, since there is no ink-i 
molewlar motion, and (2.41) reducea to 

4rh1 

Tltd• t'- -Af'(l+iRa). 

This is simply the exact version of (2. 7) 

1 4'11'11 2 1 tanO 
t'--:;lfl 1 sin&1ii.,._Mkt-itani Ul 

~~~~~::i!i~:~~~~o~p~=~ ::;t~:'~j0e~8j' ~i~~~!-i 
The latter has a negligible effect on transition (lr ~ 
bilities in the energy range of interest, but is n~_ 
to preserve the general conservation theorem {1": 
We shall, indeed, verify (1.74) for the more genen. 1 
pression (2.41). It is most evident from (2.31) _. 
{2.32) that 

-;lmT.,•t'~ J F,'(r)F,(r)o(E-E,) 

XF,*(r')F.(r')drdr' 

•LI T~l 'o(E-E.) I~ I 

in which T o• on the right side is computed from 
Fermi approximation. This il in accordance wilh 
approximate nature of (2.41). 
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