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bly be d from

) would

uatiol

" W3S aumalcd from Fig. 1 that at 240 days after
iiation the long-lived activity contributed about
fourth of the total gamma-count. Even if the
emical scparanons were only SO percent efficient so
4t this contribution was reduced from one-fourth to
m«q;hlh, it was calculated that the countmg rate
s should change by about 20 percent in two
.uhs The absence of such variations in any of the
¢ samples was considered as proof that the long-
el activity ‘'was not carried by any of the other
s and must therefore be associated with a

~um isotope.
e evidence for the presence of Ce¥? consists in:
The existence of a half-life of greater than 120 days
e phot.on component of the mdlated cenum, (2)
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1. ESTIMATE OF CROSS SECTION RATIO

An estimate of the ralio of cross sections of
(Ce®*/Ce") should now be possible from the fact
mentioned above, that at 240 days after a 30-day
irradiation the counting activity of the long-lived
gammas was one-third of that for the short-lived
activity which Shepard estimated to occur in 70 percent
of the disintcgrations of Ce'. Then, estimating the
counting efficiency for Ce"® radiation to be twice as
great as that for Ce'*' because of the larger fraction of
x-rays of about 30 kev energy,® the ratio of the disin-
tegration rates 139/141 at this time would be 0.12.
Using the half-life values of 140 and 28 days this ratio
would have been 1.1X10~ at the end of irradiation.
For a 30-day bombardment, and using the isotopic
abundances of 0.250 and 88.48 percent given by Inglnm,
Hayden, nnd Hess," the ratio of the cross sections was

of soft radi:
mys follormng K capture in this activity, and (3)
. @pombzhty of separating the activity chem\colly
a cerium, by removal of the most likely impurities.

d to be: v(lJ&)/a(l(O)nl 4.

'H Maier-Liebnitz, Zeits. f. Naturforsch. 1, 243 (1946).
* Ingham, Ha ,mdl{m}’hys.km??%7(l9‘7)
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A symmuc treatmerit is presented of the application of variational principles to the quantum theory of

 tarting from the time-depeadent theory,
clculation of the unitary (collision) operator that

, & pair of variational pnna is provided for the approximate
describes

the connection between the initial and final

states of the system. An equivalent formulation of uu thenry uobmned by exprm; daeeollm openlm'

in terms of an Hermitian (reaction) oper

independent theory, including vnmbou! pnnaplu for the aperam now used ‘o damlt uuun.vm,
emerges from the time-dependent theory by vesmq.mg the discusson uuw.w-my states.

the i phase shlh

the case ohunenngby a central force field

analysis and results in a variational principle for the phase shift.
As an illustration, the tesults of Fermi and Breit on the scattering of slow neutrons by bound protons are

deduced by variational methods.

I INTRODUCTION

\LTHOUGH variational methods have long been
applied to cigenvalue problems in many fields of
no syslcmnuc use had been m:lde of variational
res in with \mul
« period 1942-1946 when

of neutron diffusion,? acoustical and optical diffraction,
and hanical i lems.* Indeed,
N 9175:1!*-0‘«, unpublished; R, E)Imh-k, Phys. Rev, 71, 688
L, lmm and J. Schwinger, Phys. Rev. 74, 958 (1948); 75,
“L}( “L«lum on Nucku Physics,” Harvard U

+rguthers, were extensively cmplayed m the solulmn
= wave guide
ueations have also been devised for (he treatment
e on Lectures by Julian Schwi Dlmmtimnillm in
J S":" MIT Radial

t-olen! prepared by David S..
=~rslory Report, l‘cbmry 1945,

ys. Rev.

lW:J 742 (1947); J. N
vs. Rev. 74. 92 um) V. )\oh 74, 1763
. D. Jackson, Ph\:. lle;.“ 18 (l?W)

muuvnxl

m’ Ty }Am% cu'mmg‘_ (0;1«31 Unlversy Prcs
3 ), & . Tamm, J.

1o 7 oy 1o, 76 (149,
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such methods are applicable in any branch of physics
where the fundamental equations can be derived from
an extremum principle.

It is lhe purpose of tlns paper to describe the quantum
ing theory and its
variational reformulation. As a simple illustration of
these methods, we consider the scattering_ of slow
neutrons by protons bound in a molecule. This was first
discussed by Fermi® in terms of an equivalent potential
used in conjunction with the Born approximation. A
more exact integral equation treatment was given
Breit,* with quite small ensuing corrections? to Fermi’s
theory. We shall show that the results of Fermi and
Breit are easily derived from a variational treatment.
Although one could consider, without difficulty, the,
sc:ntenng by any number of nuclex, the dlscussxon will
be to the spi ep by a
single proton in an otherwise inert molecule of arbitrary
mass. An extenswn to lwo protons, and in pamcular to
the hydrog d in an
paper by one of us. Also included is an estimate of the
error in the para-hydrogen scattering cross section

calculated by Fermi's method. equations
iI. TIME-DEPENDENT SCATTERING THEORY
We are d with the devel in time of Py

LIPPMANN AND J.

. state W(=),

SCHWINGER i
In particular,
¥(w)=S¥(~ ), S=Uy=) (1

defines tne collision operator, which generates the f;,
state of the system from an arbitrary initial state 7,
operatot U,(f) is to be obtained as the solution of
differential equation

LU (0)/31]=Hi(U+©) [
subject to the boundary condition

Us(—o)=1. @
It is also useful to introduce a unitary operator Ui
which generates the state vector ¥(/) from the i,
Y(O=U_()¥(=)=U_-(S¥(=®).

Since the two operators are related by
U ()=U-)S &
the operator U—(f) is evidently the solution of 14

$h{oU_(1)/at]=H\()U (1), U-_()=1. (I}

a system consisting of two interacting parts, which are
such that the interaclion energy approaches zero as the
two parts are spaually. dingly, the
Hsm\h.oman is decomposed into tl\e unperturbed
oy ibing the two i

and H,, the energy of interaction. Since ‘the problem is
to describe the effect of H,, it is convenient to remove
the time dependence associated with H, from the
Schrodinger equation

iAW (1)/3]=(Ho+H)Y' (). 11)
This is accomplished by the ...itary transformation

W' (¢) = exp(—iHot/h)¥ () 12)

which yields

$hLOW())/a6)=H\)¥ (),
Hy(¢)=exp(iH ot/ h)Hy exp(—tHol/h)

The initially non-interacting parts of the system are
characterized by the state vector ¥(— = ). On following
the course of the interaction and the eventual separation
of the two parts, wé are led to the state vector ¥(+®),
representing the final state of the system. This de-
scription can be made independent of the particular
initial state by regarding the time development as the
unfolding of a unitary transformation:

¥(O)=Us¥(~ =), UstOU.0)=1.

8 E. Fermi, Ricerea Scient, VII-II, 13 (1936).
¢ G. Breit, Phys. Rev, 71, 215 (1947).

P. R. Zilsel, Phys. Rev. 7! m (1947)5 Breit,
Zilsel, and Darling, Phys. Rev. 72, 516 (1947),

(14)

U(=w)=5" [0}
which is the operator generating the initial state vi:
from the final state vector.
The differential equation for U.(f) can be repln]
by the integral equation
) (]
V=160 [ BOU00
- [
-
=1=6/0) [ ae=OBEOU
e

which incorporates the boundary condition (1.7). i

w(—=1; >0,
=0; </, w

Similarly, U_(f) obeys the integral equation
vomtvem [ mOU-en
,
(u
- 1+GH)) f WIHLEU-OnE =D

By considering the limit as /< in (1.12) and i~
in (1.14), we obtain

set-n [ mOUOE

LA B 2
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o
S-t= 14 (/) f HOU- O (116)
;h are, of course, connected by (1.9).
ne differential ‘and integral equations charac-
{ . zng U+()) and U_(¢) will now be replaced by equiva-
_+ yaniational prmclplcs from whlch the fundamenlal
_tions are obtail as the
. .nary property of a suitable expression. Further-
e, the stationary value of this quantity is just S, the
-ion operator. Hence the variational formulation
, ¢ problem also yields a practical means of ap-
es.mate ulculauon, since errors in the cons'.mcuon
K n-;ll be by ex-

ploying a

be ﬁrst consider
d 3 i
o) I U:(:)(?;H.(o)mow. (wm

. is regarded as a function of the operator U..(/),
at only to the restriction (1.7), and of the Her-

. .:s¢ induced in \S’ by small, independent, variations

‘¥, .adU-is

51— U_(0)) a0 ()

v [ w0 (ix-fu.o)) UL
- a h

¥

-

+ f * [ (i.,.fy,(;)) U_(;)Tw.(:)dt. (1.18)

suirement that \S” be stationary with respect to
}. o variations of U, and U, apart Irom the
> §+ -tion (1.7), thus leads to the di

a1 conjugate of the arbitrary operator U_(#). The-
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A variational basis for the mtegrnl equations (1.12)
and (1.14) is provided by the expression

'S‘-n-i [ wromoraov.om

" o
+ L UAOHOULO8

+ (;-A) ’f_: f_: U_+OH\(On(e—~F)

Thus, XH(UL(¥)dar. (1.21)

" ©
p5rms j: ) mv.+(:)5.(o[m(:)—1

+;‘ f_: W= |

+{ f': aa[v_(:)—x-f f_: dH)

+
XU_ene=0] B0, a2

which is indeed zero if U, and U satisfy their defining
integral equations. It is also evident that the stationary
value of 'S’ is just the collision operator, in the form
(1.15).

This variational principle differs from (1.17), or
(1.19), in that no restrictions are imposed on U, and
U, and that every integral contains the interaction
operator H,. The latter property implies that an ade-
quate il to Uy and L'~ is required oaly

. (L10) and the boundary condition (1.10) for

Itis also evident from (1.17) that the stationary
aol '$" is the collision operator S, according to
n A somewhat more symmetrical version of (1.17) is

$4U =)+ UM (=)
UL 13UNY)

- Lo

§
+LUOIOUO (119

VJw the restrictions
Uy(—o)=U_(0)=1. (1.20)

+euily verified that \S* is stationary with respect to
b« vas of U, and U- about the solutions of the
~tal equations (1.6) and (1.10), subject to the
* “ay conditions (1.20), and- that the stationary
«d'Sis§.

U+

during !he actual process nf interaction. Furthermore,
the second type of variational principle will yield more
accurate results than the first if the same appfomte
operators U, and U_ are employed. This is indicated
by the mults of inserting the-simple but crude approxi-.

mation
: Vu)=U-()=1 (1.23)
in (1.17) and (1.21). The former yiclds
SaA—(/0) f " mat (129

which is equivalent to the first Bormn approximation,
while (1.21) gives

S (i/h) f ey f_: f_: o)

Xn(—H () (1.25)
the second Born approximation.
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These i ions for S ill adis- by
.Adv:mlnge of the variational principles thus far dis- { pe a
cussed ; the unitary property is not guaranteed for an  g\K'm —— f [nW*’(I)(ih—— y‘(‘)) V@)
inexact S. 1t follows from (1.24), for example, that hi_w o

S*‘S:zl-(-(l/h’)( j: :n.(:)a)'. 116 +[(;A%-u‘(:))m)]*w(o]m

:\/ v;rsmn of t'h’e thcogz?;t“ rrrlyeeu this obl)’e:(t;)o:n: _f (w(.,)_w(_,»,(.‘f(l)*_;'(;")
-0 vy
V4(2)4 V(=
V()= Us02/(14+3) = U02/ 045, (12D +(ﬂ7:-(—3-1)a(V(»)-V(-,),
Note that
VH(@)+VH(~=)
V(= w)=2/(1+ —a(ﬁf)<V<~)-V<-e>>

ot symas/ass, O
=V H() V(=)

whence
1V (o) V(= w))=1 (1.29) x(w_l)l' f
and 2
V(o)=VH(—w). (1.30) If; therefore, V(¢) is restricted by the mixed bou:
condition (1.29), ‘K’ is stationary with respec
The property (1.29) leads us to write variations about the solution of the differential equ

V(w)m1—§iK; V(~w)mit+diK  (131)
while (1.30) supplics the information

K+=K (1.32) and the stationary value of ‘K’ equals K, accordi,
. . - (1.31) and (1.32).
the so-called reaction operator K is Hermitian. On The integral equation satisfied by V(i) can be
remarking that structed from that obeyed by u,(:), or directy &
S V(0)/V(—w) (1.33) ol the diff

(ih;‘—li.(:)) V(=0 it

ing manner. On i
tion (1,37) from — o to 4, and irom © to 4, wed:
“we obtain

S=(1—}K)/(1+}K) (1.34) V(')=V(—°°)—;f H@EVE©,

which represents the unilary S in terms of the Her- i !
mitian K. We shall now construct a variational prin- - f H\()V
ciple for K in which the Herrhitian property is assured. Vi=vie )+h ] eyven
Consider the operator ‘K’, defined by
‘The addition of these equations yields, in conseq{
e av #) oVH of the boundary condition (1.29)
"‘"';f (v () (l)v())'ﬂ ary (1.29),

va)-x-ﬁ f_: W=DV ¢

+% j: : VOV ($)ds where )=ty >t
1 =-—1; 4<d.

+i[( V=)=V(==) C'opvcmly, the differential equation and bonnda'n

~(H@)=VH= D] (139 sotion Note it oeud from e

which is evidently Hermiti t Th - )= V(= _1 : .
eﬂecto‘fnsmallvniauomn V(t;:.nd V"‘(I)unsd)lentes K=ilV(=)=V(==)) hf-.ll‘(l)l'(l)d(




we

VARIATIONAL

\wmtwnal principal formulation of this integral
tion is provided by the expression

- f EOVO+ VOO
-% f: VHOHOV O

;e e
-# f f VEOUOli= )

- XVt (1.42)
.wh is obviously Hermitian for arbitrary V(s). Now

| e
e st(:)u.(t)[va)-l

+;‘; f_: (—H() V(;'),al},,
_2 f_: [v(:)—1+2—: j: U-OE )

)(V(l’)dl’]+H.(l)6V(l)dt (1.43)

- ihisindeed zero if V(1) satisfies the integral equation
Furthermore, the stationary value of ‘K’ is just
the correct reactor operator.
“cabstract theory thus far developed can be made
~ a explicit by introducing eigenfunctions, ®,, for the
+ .ated parts of the system, which will describe the
4iand final states. Thus, since S®, is the final state
exergies from the initial state &, the probability
= the system will be found eventually in the par-
. .arstate &y, is

= | (®s, SPa)|*= | Seal® (1.44)
«xightly more convenient to deal with the operator
T=5-1, (145)

-.3 generates the change in the state vector produced
- e interaction process. The unitary property of §

. et that
THT= —(T+T¥) (1.46)

.. ¢ probability that the system will be found in a
‘+3lar final state differing from the initial one is

ba; Waew |Toal® (1.47)
. according to (1.15),

- [ o O U000,

2= {i/ h)f. dt(®s, exp(illot/ )M
Xexp(—iHy/BU+O)®.). (1.48)
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It should be noted that ¥, cannot be an exact eigen-
function of Ifo, since a superposition of momentum
states (wave packet) is required to produce the spatial
localizability involved in the definite separation of the
two parts of the system. Au cqmvalcnt descnphon is

d, however, by i of Iy,
Hoby= Eyby (1.49)
and simulating the ion of i ion, arising from

the separation of the component parts of the system,
by an adiabatic decrease in the interaction strength as
t—te. The latter can be represented by the factor
exp(—¢|¢]/h) where ¢ is arbitrarily small. Accordingly,
(1.48) becomes

Toam —(i/B) (&, Hi¥.(Es)) (1.50)
where

v.o@= [ " ds expl(E—HM)
Xexp(—e|¢|/B)Us()%.. (1.51)

Formula (1.16) for S~'—1=T leads, in a similar way,
to

(T)se=(i/ B) (s, Hy %o (Es)) (1.52)
or equivalently,
Ta=—(i/B)(¥e(E), Hds) (1.53)
in which
w.o)= [ wespiE-aa»
Xexp(—e[H{/MU_ (). (1.59)
Determining tions for W (E) and- ¥,(E)
can 1: obtainedeqfur:mm(l;l;)x and (1.14), the integral
equations for U4(+) and U~()). Thus

¥ P(E)m f " &t expG(E~EN/) exp(—elt| /M@,

— G/l f " dr expli(E-Hr/M)
A

Xexp(—er/MH ¥ H(E) (1.55)

and

Yo N E)= f. dt exp(§(E— E)i/B) exp(—e[¢|/R)®.

G/ f " dr exp(=i(E—H)/R)

Xexp(—er/WH ¥ E), (1.56)
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where 7= {—=¢|. Now

e f " dr explaci(EmHe)r/B) explmsr/B)
hdy

1 E-He .«
Exie—H, (E-Ho+e (E—Ho)+e
1
= Find(E—Ho). (1.57
" iwd (. o). (1.57)
The last is a symboli nt of the fol-

lowing integral properties possessed by the real and
imaginary parts of (1.57) in the limit as e—0.

s - fts)
i xx+.ff(x)dx=Pf e
(1.58)
o1
Lim~ f o @i=10),

where P denotes the principal part of the integral and
f(2) is an arbitrary function. Therefore

Y (E) = 2xhS(E~ E)®o

H\¥S(E) (1.59)

+_
Ezie—Ho

and, on writing

Vol EME) = 2xhs(E~ E) W, (1.60)
we obtain X
W) = Py ———————H W, &), (1.61)
T Bewie—d, |
These eqy provide u time-ind dent formula-

tion of the ncutlcrmu prohlcm, in which the small
Jemitive or negative lmagmary uldnlwn ta I.he energy
nerves b select, A g
st teres] waves,

A matrix clement of the operator T can now he

expressed as
Toom = 2%id( Lo~ £y) Tsa (1.62)
Toam (b, I ¥a) = (), I1ids)  (1.63)
are cquivalent forms for an element of the association
matrix T, which is defined only for states of cqual
energy. lhc resulting formula for the transition prob-

ability,
Wonm 4x{8(La— Ep) | Toa]® (1.64)

i# 1o be interpreted by replacing one factor, 8(E.— Ey),
by its defining time integral

where

1 e
$(Ey=Ey)= ;’—r—‘-‘ f-' exp(i/(Ea—~Es)t/ )
Xexp(=«|é|/B)dt; —0 (1.65)
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‘probability that the system, known to be initialh

in which E,—E, must be placed equal to zero, iny;,
of the second delta-function factor. The expressiog:
obtained

, .
Wrm-SE~E Tl [ a,

evidently describes the fact that transitions occury
between states of equal energy for the separated sys~
and with an intensity proportional to the total tin,
effective interaction. In the idealized limit e -
latter is infinitely large. However, we infer from (1,
that the rate at which the transition probabilty .
creases is
Wu-(Z’r/R)‘(E. Eb)“'ul’ (B

A y d o
result follows from '.he evaluation of

]
m--;l (@, Us()2.)|* (-

which expresses the increase, per unit time, o

the state g, will be found at time ¢ in the state ), ).
W= ;(H (OINOL M V]
X (®s, U4(8)Pa)+complex conjugate
-% f_‘_ A (exp(6/ (Evm HOW/WU (000, B

X (@, Hy exp(i(Es—Ho)'/H)

XU (#)®)+ce. i
in which we have employed (1.12), and assumed "
b><a. This can be simplified by noting that (1.5 4
(1.60),

[ etz HuB expi—eltl MU

=2xhd(E— E)¥.'"
imply that

exp(—iHd/h)U ()@= exp(—iES/R) ¥,
which is just the state vector, in the Schridinger =4
sentation, of our idealized stationary state. Hesr

. .
ol Tu? f_  CxPlEa B/ s

2x
"T[ Toa| %8(E.~ Eb).

A simple expression for the total rate of tn:*

LR &4

from the initial state follows from the general j«-4
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_ s¢ operator T contained in (1.46). On writing a
-rivelement of this operator relation and substituting
.1, we obtain

252 i(Enm ENToa*8(Es= B Tas

=27i8(Ea—E)(Teo—Tas*). (1.73)

. factor 8(E«—E.) can be canceled and (1.73) then
4, for the special situation, c=a,

AP L 8(Ea=Es)| Toa| 2= —4xim(T.a) (1.74)

Lo 1wsa=—(2/h) Im(T.a). (1.75)

. «luside of this formula is not exactly the total rate
~asition out of the state a, since b= ¢ is included in
. xmmation. However, a single state makes no con-
.ion to such a summation; a group of states is
. “1 A relation of the type (75) is characteristic
. save theory, in which the reduction in intensity of
e wave passing through a scattering medium is
.ated for by destructiv ‘nterference between the
wave and the secondary waves scattered in the
«wn of propagation.

«wariational formulation of Eq. (1.61) by means of

.--sional principle (1.21). A matrix element of this
“mtor equation reads

r’/'._i f_ B LU/ U0 B2
{0y exp(i(Evm HO/ WU 1 ()82)]

';’ [ stespt-ittarnru_o,
- X Hy exp(—iHs/MU+()%)

) of e

MH,exp(—iHo(t—1')/h)
X H, exp(—ille'/B)UL(¥)®a) (1.76)
+ 1 h the adiabatic reduction of H, for large |¢| has
«n indicated explicitly. We now restrict ourselves

class of  stationary states, according to the
;ion

* Nenpl-it1 /1)U (0= exp(—iEt/MWLS. (1.77)

...onary expression for Tie can be obtained from the -
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where E is the common energy of states @ and & We
shall verify directly that (1.78) has the required peoper-
ties. Thus

1
3T'sa= ( 8%, H, ,(¢.+mﬁ 1%,

M))+((o.+ e

—\h"’), H.&V."’) (1.79)

which is indeed zero for variations about the solutions
of (1.61). Furthermore, it is a consequence of the latter
equations that

1
(W), HyW, @)~ (‘l'u“’, H nmﬂ n‘h‘*’)

= (%, Hida)= (&, H1¥,*)  (1.80)
so that the stationary value of *T"s, is Ts., according to
(1.63).

A similar theory can be developed for the matrix
elements of the operator K. It is easily shown that

Kia=2x3(Es— Ey) K, (1.81)
where
Kia= (@, Hi¥ V)= (0@, Hi®).  (1.82)

The time-independent state vector ¥, describes a
stationary state, according to the relation

exp(—iHo/h) V() Pa=exp(—iEJ/R)¥." (1.83)
and obeys the equation

1
Y W=+ P )H S AN 1.84)
+ (E__ =) )

A variational basis for (1.82) and (1.84) is provided by
Ke= K= (0N, Hida)
+ (&y, HH¥ V)= (a0, H ¥ V)

+ (\I{.‘" H,P(——)H.'{'.")) (1.85)

The connection between the matrices Tand Kis

1
e, H -H\ ¥ "”) 1.78,
+( ), lE+t'¢ H.-l W® ), (178)

< oult of p ing the time i ions is ex- obtained from

Iy Y T=S—1=—iK/(144iK) (1.86)
) ?‘-{*‘H' 1)+, H00) on rewriting the latter as

~( Hi ) T43HKT=—iK. (1.87)

Non-vanishing matrix elements of this operator relation
are restricted to states of equal energy, according to
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(1.62) and (1.81), whence
Toatix Te Koeb(Ee= E)Toe=Kss,  (1.88)

where £ is the common energy states @ and 4. An effec-
tive way to solve this equation is to construct the eigen-
functions of K, which are defined by the eigenvalue
cequation

Lo Kieb(Ea=E)faa=Kafoa. (1.89)

Since K is an H matrix, the eig K4
are real, the cigenfunctions fu4 are orthogonal, and may
be normalized according to

Ze faa*$(Ea=E)fon=sa. (1.90)

The matrix elements of K can be exhibited in terms of
the eigenfunctions and eigenvalues of K

Kia=T 4 fraKafos® (1.91)
Equation (1.88) for T will then be satisfied by
Toam=X a foaTafed®, (1.92)
where
TatizrKaTa=K4u (1.93)
o Ta=Ka/(14ixKy). (1.94)

This is only to say that T is a function of K and there-

fore the same ci jons, while its eigen-
values are tlclcrmmcd by those of K Thm eigenvalues
can be ing the real
angles b4, aceording u,
Kam—(1/7) tandy (1.95)

w that

Tpm = (1/7) 5ind ™. (1.96)
The it pression for the ition probabili

per unit time is
Wea= (2/7h)| L 4 sinbac®fosfas®| 8(Ea—Ep) (1.97)

and the total probability per unit time for transitions
from a particular state is given by

T thaw (2/7h)L 4 6in%alfaa[®  (1.98)

according to (1.97) or (1.75). Finally, the sum of the
total transition probability per unit time over all
mitial states of the same energy is expressed by

2 Wsab(Ea—E)=(2/xh) L a sin%s.  (1.99)
Y]

These results are ions of familiar f
obtained in the conventional phase shift analysis of the
scattering of a pnrticle by a central field of force. In
the latter sntuauon, lhc elgcnfuncuons of Kare evident
from namely the i
of Ks. under & llmulunebul rotation of kq and ks, the
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propagation vectors that define the initial 44 ¢
states. It may be inferred that the fux are gi.
harmonics, considered as a function of the angly.
define the direction of ka,

fea=CV™(ko); A=mlm, (12

and that the eigenvaiues of K depend only ypon,
order of the spherical harmonics, i.e., $4=3. The,.
stant C is fixed by the normallutm convention -
tained in (1.90), which now reads,

ICI* | ¥ ()Y o (k) pdRom 8118w, (1°

Here pdQ is the number of states, per unit energyn
associated with motion within the solid angle dg :
occurs as a weight factor in a summation over s,
with equal energy, replacing the summation ow
states as restricted by the factor 3(E.—E). Expiv

Py l h’
SHA'JE 8:-'h v

[

if we consider a unit spatial volume. The second:
in (1.102) expresses p in terms of the wave nun'.
and v, the speed of the particle. With spherial
monics that are normalized on a unit sphere (I°
requires that
|C|2=1/p=8x%ho/k*. 1
We may now compute from (1.97) the proba!
per unit time, that the particle is scattered frc
direction of k. into the solid angle d2 around the¢
tion of ke,
wa=(2/xh)| L, sindie®|C|2Y ~(ke) ¥~ (k)| i
xs
4

‘We then obtain the well-known expression of i
ferential cross section for scattering through anaz

do ()= (1/4%) | T (2+1) sinl:cﬁPx(cosd)l’dﬂ «

on dividing w by 9, wh:ch measures th tlle fluxof i

parucles, and employing the
tion theorem,

£ ¥oT (k) =[@4+1)/41Pico), ©

where the Legendre polynomial Py(cosd) isa
of 9, the angle between k, and ks. The total sa*
cross section is obtained from (1.98),

o= (2/fhv)2: 8| C| | Vim(ko)?

= (4x/A)Z1(2+1) sin® «
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B t _asequence of

M TalFm(R)it= @+D/4r (1108)
, the total cross section is independent of the
. ulirection, the same result follows immediately

).
Y o mnsxder finally, the variational formulation of
[N s possessing the general character of the scat-
v a central force ficld; namely, those in which
" enfunctions of K are detcrmined by symmetry
. «ations, and the basic question is to obtain the
uJues K., or the phase angles 3. For this purpose,
* wexe that the inverse of (1.91) is
"T‘,j..’B(Eu-E)Kufu‘(E-—E)-Kdu- (1.109)
.saducing the state vectors
Lo Pafasd(EamE)= 24,
Te ¥a ferd(Ea— E)y= 4™,

4§, . .-utional principle (1.85) becomes

(1.110)
(L111)

1 Pt b= (0, Hid)

+(®ay Hi¥a®) = (%50, Hi¥4 V)

+(W'(”’H'P(ET21—.)H"{/“")‘ (1.112)

. . vat &4, or more exactly written &, &, has the

1} 7% orthogonality-normalization property:

e 40.5)= Lo foa*8(Ea= E)fund(Ea— E)
=§(E~E)Lofes*8(Ea~E)fes
=8480(E—~E')

-at the inverses of (1.110), (1.111) are

v @ W=Lafoa*®a, VaV=T4 foa*Ta®  (1.114)

(1.113)

0™ peh are expansions of these state vectors in eigen-
Vicls of K.

':“ ETRON SCATTERING BY A BOUND PROTON

« 1 application of the variational methods dis-

bt 2 the first section, we consider the scattering of

o wtrons by a proton bound in an otherwise inert

- ve. If the momentum associated with the center
-4y of the whole system is assumed to be zero,
“etturbed Hamiltonian consists of two parts, one
=g the velative motion of the neutron and the

f + 31 center of gravity, the other being the Hamil-

-- 4 the internal molecular motion,

Hom (0a%/2u)+ U m.
umAM/(A+1)

un
atte

@.1)
(22

PRINCIPLES 1 Hy
is the reduced mass fur relutive motion of the neutrun
and molecule, while A is the molecular mass in units
of M, the mass of the ncutron. The perturbation is the
neutron-proton interaction enengy,

M=V (ta—r1,) 23)

which also depends upon the spin operators of neutron
and proton, ¢, and o,. The simplifying feature in this
problem arises from the short range and large magnitude
of the nuclear potential contrasted with the long range,
weak molecular forces. The variational principle (1.78)
requires a knowledge of the wave function representing
the state vector only within the region of nuclear inter-
action, where the molecular force on the proton is
negligible. Thus, the basic problem is the scattering of
a neutron by a free proton, with essentially zero energy
of relative motion. We therefore first consider some
properties of the latter system.

The unperturbed Hamiltonian for a neutron and a
free proton, in the system in which the center of gravity

is at rest, is
o=p/M, (2.4)

where p is the relative momentum of the particles. If we

ily omit the spin di the wave func-
uon A re'pr&n(mg the unperturbed state vector &, is
simply a constant in the limit of zero energy. This con-
stant can be chosen as unity, corresponding to a unit
spatial volume. The wave function representing the
state vectors W, and ¥, will be denoted by y¥(r).
There is no distinction between outgoing and incoming
waves in the limit of zero energy. Since the scattering
is necessarily isotropic, Tye is simply a constant, denoted
by t. According to (1.63), t is given by

=0, V)= [ Vo, @5
where ¥ obeys the integral equation (1.61).
Y+ (1/K) V= p. (2.6)

‘The connection between t and the S phase shift is ob-
tained from (1.92) and (1.96),

t=—|f|%a/x, @7

in which we have employed the zero energy limiting
form,

sin&—bka ; k0 (2.8)
thereby i de 6. The
constant f is fixed by the nonnal-uuon condition (l 90),

1/14wp=1 2.9
where, (1.102),
dxp=kY/2xtliv=kM/in*ht. (2.10)

The second form of (2.10) follows from hk=}Afr, the
relation between the relative momentum and the
relative velocity. Finally,

tm —dwta/AL. @)
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If the neutron-proton interaction operator is spin-

dependent, t must be replaced by a matrix in the spin

The e of this spin

matrix arc those of the triplet and singlet states of

resultant spin angular momentum. The associated

cigenvalues of t arc related to the triplet and singlet
scattering amplitudes,

ti.o= —dxhia, o/ M. (2.12)

As in 1.92), the matrix t can be conslmclcd asa linear
of its

which are the m.nnx duncnu ol projection operators

for the The

operators for the tnplct and singlet states are well

known to be

Pi=1(3+0.-9,)} Po-—*(l—l'n a5).

d 4

(2.13)
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A second approximation involves the last 1,
(2.15), which is small in comparison with s, ,
terms, since molecular energies are negligible ;.
parison with the practically equal kinetic
neutron and proton during the nuclear inte
process. If we initially ignore the last term of (21
latter reads

‘Toa= (%37, VFo)+(Fy, VE.P)
1
= (W), V¥ )~ (\y.(-), V_VQ‘(Q)). £
I
The condition that ‘T’ be stationary is tha ¢
satisfy the relation
W B+ (1/5) V¥ =Fo(r).

On with (2.6), it is evident that

Hence, to include spm it is
sufficient to regard t in (2.11) as a spin operator, with

@=a,P1+0a0Po=1(3a1+a0)+}{a1—ao)on 0, (2.14)
We shall now perform an approximate but highly

accurate evaluation of Tya, which describes the scat-

tering of a neutron by a bound proton. For this purpose,
(1.78) is written

Msem (1307, VOo)+ (0, V)

1
— (B, V) — (\p‘(—), V—vv¥, _m)
o

1 1
e, V(—i——) va.fﬂ), 2.15
+( y LEtie—H, % @15

In treating the spin dcpcndent interactions, it is con-
venient to suppress spin functions and thus regard Ty
as a spin The first imation to be
introduced concerns the wave function represenung the
state vector ,, say ®a(ra, . Here r, is the neutron
coordinate relative to the molecular center of gravity,
while r symbolizes the set of internal molecular coor-
dinates, including r,, the proton position vector relative
to the molecular center of gravity. This wave function,
describing the independent motion of the neutron and
molecule, will have the form

Pa(rw, 1) = exp(ike: a)* Xa(r) (2.16)
in which xa(r) is an internal molecular wave function.

Wo#) = y(ta—1,)Fa(r) .

and the stationary value of “T’s., an approxima:,
the correct Th,, is given by

Tou(Fy, V)= (Fo, V¥Fa)
=t [0
according (o (2.5). This result,
T 4wh? ks
u———Tf expli( AR
Xxe*(D)xa(ehdr |
is the Fermi approximation.

. To include the last term in (2.15), we observe:
may be written, in terms of wave functions, as

S =1
1 1
x (r., rf———t—|r, r’) V(td-1,)
E+tie—Ho %,
XY H(ra, ¥)dradrdr,dr.

We shall again introduce an approxnm(m-
explmu the sho}‘t range of V in compum

Now &(ra, 1) in (2.15), only occurs y the
short range nuclear potential ¥ (r,—r,). We shall there-
fore replace $4(rs, 1) by

Ba(rp, £)=Fa(r).

The error thereby incurred is of the order (kro)?, where

ro is a measurc of the nuclear force range. Since the

influence of molecular binding is only of interest for slow

neutrons, - (kre)*2210%, and we nced not introduce a
ion to for this repl.

tipli namely, the
by
@17 f W, DV (= 1,)KO(r, )V (12— 1)
N X ¥ (!, P)dr.dedrdr,
where

1
Ezzie—Ho  3C

1.l ', ()

K@i, 0= (s




Bot| Fr@F(dr+e

{'.‘J 1
R STy
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¢ conditions that ‘T's be stationary are then ex-
msed bY
1

oV = e [ xewn
XV(ta' =1,V S(r, ¥)dr'dr’  (2.26)
-xh, in virtue of (2.5) and (2:6), imply that
Vo = P(ra=r,)GaE(r) (2.27)
Jete Go#(r) obeys whe integral equation

G-t f K@(r, V)G ®(r)dr'=F,(r). (2.28)
+isa generalization of the integral equation obtained
« Breit.

The stationary value of “T"s, is given by

Tox(Fo, V)=t | F*(1)G, P (r)dr. (2.29)
- integral equation for Ga¢*)(r) can be solved by suc-
e substitutions,

k-t f KOs, )F(r)dY

) f K1, ¢)KD(T, 1)

XF(P")dEde -,

vrhis evndcmly a power senu expans\on in a/l,
vlisa Since
. ~1073, the series converges rapidly and it is quite
+%ient to cetain only the first term beyond F.(r) to
unan accurate estimate of the correction to Fermi’s
.- roximation. Therefore,

(2.30)

Fy*(n) K (x, ¥)Fo(r)
Xdrdr'. (2.31)
I> construct K(r, '), we observe that

[5 4 )

1
z); o, ')E-'-T—

Pt (), 1)

f = expie£2)-xo(F)
x 1
Eie— (k3 2u)—~W,
Xexp(=ike 2, *(F). (23D
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In the second version, the summation over the states
of the system molecule plus free neutron is explicitly
performed over the independent states of the molecule
and of the neutron. For the evaluation of the corre-
sponding matrix element of 1/3C,, it must be realized
that the latter operator refers to the relative motion of
neutron and proton only. Thus

(l.,r llr r‘) f(z ).ﬂp('k (r.-r.)(’ﬂ,

Xexp(tk: (ra'~1,"))

ratr, rJ/4r)
X&(T-———z—-)ﬁ(l-l’ , (2.33)

where 8 symbolizes the set of internal molecular coor-

dinates, omitting r,. We are actually interested in
(2.33) as ra—r, and r)—r,’. In this limit, 3(ra+-r,/2
—1a'+1,/2) becomes 3(r,~r,") and we may employ
the completeness relation for the molecular eigen-
functions,

3(r,—1,)8(8—8) = 3(r—r)= T, x+(xy*(r). (2.34)

One can now combine (2.32) and (2.33) to form

dk
ket O)=L [ G POk D)

1 1
X[E+i¢—(h’k’/2u)—lv,T (m'/u)]
Xexp(—ik:1,)x,*(r)

M
-F§ f o ),exp(-k (6—1,)
/M1
————F— [x4(D)xy*(¢). (2.3
P SN
Here
kyt= (2u/W)(E-Wy) (2.36)

and n=(2u/7%)e._The k integration in (2.35) involves
the well-known integrals

dk exp(ik-(r,—1,)) exp(ity|t,—r,'])

(239)
@) B=ki=in 4r|r,—1,’]
and
f dk exp(ik: (r,—1,7)) 1 e
(2xp B dx|—-r)|
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where

ym i
l:,-+(,—,(l£-ll'.,)) i Wy<E
3

2% i
-+i(;.—,~(lV.,—E)); W.>E (2.39)

the propagating or attenuating nature of the sphencal
wave corresponding to whether or not the excitation of
the molecular state v is energetically possible. Finally,
then

M
K )= Z x:0x™()

2u exp(iky | rp=1,'[) =1

2.40)
LN @0

and

dxh?
'r..z—éuﬁa[ [ B

+oZ [ A0 @)

XMMI_‘F_@)dmf], (241)
|11,

The ratio 2u/M ranges from unity, referring to a free
proton, to 2, which applics to a proton bound in an

AND J.

SCHWINGER

mﬁmlely heavy molecule. Our results for these !
tions are in agreement with those of Breit. In pan;
for a free proton k,=#k, since there is no il
molecular motion, and (2.41) reduces to

Tyumt'= ——:—{—¢(l+c‘ka). f

This is simply the exact version of (2.7)

lfl’ se8 dxh? 1
= —— sinde=m — —— - 4
M kl—itans ¢

tans

with tané replaced by %a, the low energy limitirgi—:
but retaining the complex factor 1/(1—i tand)~:
The latter has a negligible effect on transition |
bilities in the energy range of interest, but is nece..
to preserve the general conservation theorem (l*
We shall, indeed, ven(y (1.74) for the more
pression (2 41). It is most evident from (2.31]
(2.32) that

1
- InTu=t'T f FHOF()ME~E.)
- .

XFMr)Fo(r')drdr
=2l T 8(E~E)) 3}
in which Tee on the right side is computed fron
Fermi This is in d witk

approxumu: nature of (2.41).
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