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The llxmry of scattering is developed from first pmmplea with strict attention to the question of the
preparation of the state vector of the system appropriate to a dem-plnm of scattering. The connection

and § matrix

between the present formulation and the more

prescntations is traced. The wave matrix of Mgller is introduced and the existence of bound states is dis-

cussed in connection with it. A number of apphumns to rather invols

processes are discussed. Finally,
is treated.

the problem of self-cnergi

in, scattering

1. INTRODUCTION

’ ["HE theory of scattering has become vedy familiar
to physnclsu during recent years and the subject
is discussed in numerous textbooks. Nevertheless, ‘here

In the case to be considered first, the major problem
is the characterization of the state vector of the system
and its development from some sort of initial configura-
tion. The fact that the interaction, V, \s:lway: present,

does not appear to be a unified of

theory which p ds from fund

mechanical principles and which is of sufficient gener-
ality to cover most cases of interest. The present work
represents an attempt to fill this deficit. There are very
few new results, but the point of view of the presentation
is somewhat new.

* The material to be presented is the outgrowth of a

but heless the physical process is to be described
in terms of the ing state vectors,
a very careful discussion of this point.

The Schrédinger equation (with % taken as unity) for
the system with interaction is

¥ 1)/ o= (K+Vy¥ (). @21

Let us denobe by d).(t)nwr“" the stationary state
to umty) of the Schrédinger

series of lectures on special topics in me-
chanics given by the authors during the Spring Quarter
(1952) at the University of Chicago.

The closcst parallel to our development is to be found
in the work of Lippmann and Schwinger.!

II. DERIVATION OF THE TRANSITION PROBABILITY

Ina of
a system of two (or more) collldmg parts is governcd
by a Hamiltonian H that includes interaction between
them. We imagine, at least in simple cases, that H is
split into two parts, which we shall call X and V, such
that if K were the entire Hamiltonian the colliding
parts would have the same internal structure but would
suffer no scattering. The question we ask then is the
following : What is the rate of transition from one such
noninteracting state to another? From the transition
rate, cross sections may be computed in the well-known
‘way.

There are many pmblems, pamcularly in the non-
relativistic domain, in which of H into

equation in the absence of interaction:
190(1)/9t=K$(1). (2.2)

We shall discuss the calculation of the differential
cross section for scattering from state ®; to state ®;
caused by the interaction V. The “initial state” &;
serves to characterize the actual state ¥; of the real
system. We may, knowing ¥;, find the rate of increase,
during the time of the scattering, of the probability
that the real system is one of the “final states” ;.
Suppose that we examine the transition rates at time
t=0, It is necessary to represent mathematically the
way in which the state ¥; has been prepared during
n-nes t<0 for examplc by directing an approximately
ic beam of particles
ata scattcnng center. One might try a model in whlch,
at some time T in the distant past, the system was in
the “free” state &, so that ¥,()=c¥ "‘”1’;(1‘)
are d mto Lhe
of ¥, by the h

1d, d

K and V is trivial. K may be the kinetic energy or the
kinetic energy plus the potential energy between a pair
of pamcles In any case, 0 far as the contmuons
is ¢ K and H
are the same and there is no question of self—energlu or
of renormalization. For the present we shall oonmder
such simple systems, postponing to Sec, V the di:
of the more complicated situations that arise in the
case of quantized ficlds where the concept of non-
interacting systems is rather obscure.

3 B. Lippmana and J. Schwinger, Pbys. Rev. 79, 469 (1950),

‘that the train of incident waves is released
all at once at time T. Rather, ohe must represent the
incident train as fed in over a period of time in the
past.usmgl\l’;th&tulmmoravengeoml‘oﬂhe
ones suggested above. For instance one could take
¥,(4) as

- f dTe#eT,(T) or 1 f AT em-reT),
-2

with ¢ allowed to approach + e at the end of the
calculation. We shall adopt the form that is most
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convenient mathematically ; namely,

0
VO =c f dTeTemH =TI (T}, (2.3)

-
Again, ¢ will be allowed to approach +« in the
evaluation of cross sections; but care must be exercised
in passing to the limit since there is another limiting
process to be perlormcd Our ¢'s are normalized to
unity in a large region of lincar dimension L and volume
132 We must that 7 or its equi €,
corresponding.as it does to the length of the incident
wave train divided by the group velocity v, may not
cxceed Ly~'. When ¢ and L both tend to infinity,
quantities proportional to ¢='L~* will tend to zero.

It may be objected that we have unnecessarily
restricted our choice of an average by taking the
phases of contributions from various times T to be
equal; that is to say, we have not considered such an
expression as

o
€ f dTerTe il U=T)gin(NP (T),

o

with «(7T) neither equal to nor ﬂnally tending to a
constant. But it is clear that a variation in phase of the
parts of the mcldcm: wave tram over the length of
time ¢! 1 t of those
parts and would be mcompat\ble with the condition
that the energies in the beam be within ¢ of E;.

Let us now proceed to the formal computation of
transition rates. The probability that the system is in
state ®; at time ¢ is

wii()=|fu ()N, (24)
where
L) = (@0 () 235)°
and .
N y=( )1 2,0)) (2.6)

(We have suppressed the index e attached to the state
wvector.) The normalization N, is independent of time
because the Hamiltonian is Hermitian.

Equation (2.3) tells us that

(N
V() =eHte | dTeTeiH-ENTy,, [¢X)]
or -
W (= ‘——————-——¢ (2.8)
= s

Since ¢, is an cigenfunction of K it satisfies
(H—Ej))¢;=Ve; (2.9)
? lecause of the fact that we are considering the system to be
enclosed in a large box, the encrgy cigenvalues of X do not

preciscly coincide with those of encrgy shilt, which is of
the order of magnitude e nouhl, strictly speaking, require ‘a
slight modnﬁc-llon of our formalism, but we shall dhnprd it

for llﬁm being. (Ses Sec. V.) ] Nonool our conclusions wil
mod
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and thus for the state vector at /=0 we have the
expression,

1
¥;(0)= —Vé; 2.10)
4(0) "+E,—H+{¢ (7 (2.10)
Instead of the explicit formula (2.10) it will be con-
venient to use the implicit relation,

1
¥4(0) = —————V¥,(0), @)
Ej~

K+ie
obtained from (2.10) by algebraic manipulation. If V'
is to be treated as a small perturbation, one uses the
power series expansion of (2.10) or (2.11),

¥y(0)=os+ Vs

E~K-+ie
1 1
Y
Ej—K-+ie By~K-+tie

which also serves totshow the connection between
(2.10) and (2.11).
Using (2.11), we see that

Ju(@)= 3u+E TEie

Ris(e)= (o V[¥;(0)). (2.14)

‘The form (2. 13) is useful because it exhibits the nature
of the singularity in fi; when E;=E; and ¢ tends to 0.
In order to see that Ry;(¢) behaves smoothly with
respect to energy when we pass to the limit, it is
sufficient to substitute for ¥;(0) in (2.14) the series
solution (2.12). The Green’s ﬁmcuon,

————Vort-e, (212)

-Ri(e), (213

where

GH(E)= lun —_— (2.15)

E0= 1R Bk
appears only between V's Illd never acts dlrectly on an
of K. In fi one

must discuss the energy dependem:e ‘of Rij(e) more
carefully (see Sec. V). However, we must not apply the
limit on e to Ry;(e) directly since, on account of the
normalization of the ¢'s, Ri;(e) is proportional to L=
and the two limits must be taken together. (For the
sake of simplicity, we shall treat the quantization
volume as it would appear in a reaction in which two
particles collide and two particles emerge. If there
are more than two particles in the final state, appro-
priate factors of volume must be inserted. None of our
conclusions are modified by this complication.)

‘We will take it for granted from now on that

liv;:. Ry(L'= Ry
i~

is free of singularities at E;=E;.
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In order to compute time derivatives of fy at (=0,
we will write
Jus(t)y = (@al 4 F B | (D)), (2.16)
which yields at once
S @)= ingi (Ei— H)*|¥4(0)).
For the transition rate we need only

(217

Juu(@) = —iRuy(e). (2.18)
From (2.13) and (2.18) we have
. .
[;'/ii(‘) l‘]u' 25i; ImR4(¢)
ml Rl (219

‘We are now in a position to deal with the normaliza-
tion N; of the state vector. Since the ¢; are a complete

set of states,
Zilfufltm iy (2.20)

Using (2.19) and (2.20), and the fact that &, is con-
stant in time, we see that

2e¢
2ImR;()+X mlkq(t)l"o (221)
If we now compute N ; from (2.13) and (2.20), weobum
2 1
1= ImR ———— Ry, (222
Ny 1+e /;(¢)+}:.'. (E,—-E‘)'fe" u(O1Y (2.22)
and, simplifying with the use of (2.21),
Ni=1+4(1/¢) Im:R,/(e). (2.23)

We may remark that R;;(e)~L™® and thus the double
limiting process makes NV tend to 1.
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It is clear that the single state j considered as a
possible final state will contribute nothing to the
density of final states; nevertheless, the rate of change
of wyy is of importance when considered as the rate of
depletion of the initial state.

From the fact that the normalization is preserved in
time it is clear that the rate of decrease of wy, is given

isely by the rate of transition into all other states
$pd 5, If we set i=j in Eq. (2.19) we obviously obtain

d 2
N/—w”] =2 ImRy(Q+- Ryl (226)
da fry e

Now in the limit of L (and thus e-.o*) the second
term is vanishingly small in comparison to the first
term [see discussion following Eq. (2.15)]. We have
thus deduced the well-known theorem (in the limit
e—0*),
. 1 _2r WE~E)
=2 Im®,,/L 'Fz:_’zlﬂul (B~ £,
2 (2.21)
Z oym——- Im‘ﬁ/h
So far we have made use only of f‘,(o) and £,,(0). An
of higher d is not necessary for
the calculation of cross sections, but sheds some light
on (he mea.mng of our ,mat.hematiul description of
Adi of ivati

the second de of wy
suffices to illustrate the point. One finds easily that

iRuor]

Ny (0)= t{ 82 Im&/(‘)‘i‘m

| 26(E—E;) ImViRis* () _ 26 ReVisRs*(e)
E—Ep+e (E—~Ey+e

For any finite value of ¢, this expression is a perfectly
well behaved function of energy Consequently, if one

. (2.28)

Now the differential cross section for the
j—i is equal to the transition rate divided by the flux
oL, where v is the relative veloclty of the comdmg

p v (8)
N pbis(§) =N, :["lq(o)+'ﬁ'u(0)+ ] (229
one sees by (2.19) and (2.28) that the second

systems. Except for the smglc state 7, to be di
afterward, we have for each ¢ the following expression
for the differential cross secu'on, using (2.19):
o e | Ry () LMY, (2.24]
".~o'(E E;) alu()l (229
Now the factor in parentheses tends to 2w3(E;—E;)
which is to be interpreted as 2 times the density in
encrgy of final states § at energy E;; the conservation
of energy is understood as well. If the volume in
momentum space per unit energy about state § is wi,
then the density of final mmhuwmdwelnv.e

o4y 2x | Rt (2.25)

term is of order ¢ compared to the first term. Thus for
times less than e, 1;;{¢) =1:s(0).

From the pmedmg discussion it has become clear
that for practical purposes one may ignore the compli-
cations of the double limiting processes and deal with
the state vector ¥, obtained by letting ¢ tend to 0,
which evidently satisfies

UP=AGOENR.  (230)
Cross sections can be computed from the quantities
Riy= (8] V¥4 (31

en an obvxoul way. It is evldent fwm (2 28) dnt h"’
is an eig of the total He
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E;, It ls the conventional smnonary solution of the
problem p to an “
wave” ¢;.

Although it is useful to work with ¥, it is necessary
to excrcise care on account of its singular character
when cxpressed in terms of ¢'s. For example, the
operator K is not Hermitian when it appears between
¢; and y;®), since they satisfy different boundary
conditions at infinity. Rather,

(Kas|¥s )= (i K =(e,| Vi) (232)

For most purposcs it is safe to consider the normal-
ization (Y, |y4) to be 1.

III. § MATRIX FORMALISM

In this secuon we shall outline the oonnecnon be-
tween the p and the of
the i the introduction of
Helsenbergs S matrix* then follows in a natural way,
as pointed out by Schwinger.* Our development will be
similar to that of Lippmann and Schwinger,! though
different in point of view.

Starting again with the Schrodinger equation (2.1),
we remove, in the usual way, the time dependence of
the state vector associated with K by a unitary transfor-
-wation to the interaction representation. Let

V()= E ().

According to our definition, the interaction rej
tation reduces to the Schridinger representation at
time ¢=0. The new state vector satisfies

W ()/at=V ()W (1), (3.2)
V(§)=eiktVeiks, 33)

We introduce the unitary operator U(¢, f) such that
V() =U(, 6)¥' () 34

for each solution ¥'(¢) of (3.2). U (l. #) has two obvious
properties that should be noted

U@ =1, 3.5)
Ut t)=U(, U, o). (3.6).

Let us exhibit some explicit formulas for U(t, t).
TFirst, we may use our knowledge of the time dependence

@3.1)

where

of ¥(6):
W () = e H U=t (1), &3]
Rrom (3.1) and (3.4) it is then clear that
U (b bo) = e$KteHK+VI (=t0) ~iK s, (3.8)

To express U(l, lo) in terms of quantities in the inter-
action rcprcsentltion we differentiate (3.8) with respect
LIJhA W heeler, l’hgl Rev. 52, 1107 (1937); W. Heisenberg,

yuk 120, 513, 67:
winger, Phys. R«v. 7‘, 1439 (1948).See also yeference 1.
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to 4, obtaining
$OU (b, to)/ b= KV g4 (KA -t)g=4Kiy  (3,9)
which we may rewrite with the aid of (3.3) and (3.8) as
DU, t)/ b=V OU, t). (3.10)
Integrating both sides of (3.10) from /e to /, we have

\ .
U@, t)=1—s | &VEU(E, k). (3.11)
“

If we differentiate (3.8) with respect to /4y and then
integrate, we obtain
o
UG, t)=1+i f FUGLOVE). (12
.

The formal solutions of (3.11) and (3.12) by iteration

can be wntten, with the aid of Dyson’s ordering
operation,® as
ue, h)-(exp[~ i j: dt'l'(t’)])" 3.13)
d
B vt~ (et i "wm]) .G

respectively, where the symbol ( ), means that the
terms in the power series development are to be ordered
with the functions of earliest times sundmg to the
rightand ( )- mdmcntes otd:nng in the opposite sense.

It is such as
U(t, ~=) by allowmg & to approach —w in such
equations as (3.11)-(3.14). That it is not completely
straightforward to do so becomes clear if we try to
substitute fp=—c0 into Eq. (3.8). However, we are
faced with no great mystery. The integrals in (3.11)-
(3.14) may be exemplified by the second term in the
expansion of (3.13):

. .
- f V(E)=—i [ dremeyeime,  (3.15)
0 L]

The limit as 4y tends to — @ of a matrix element of this
operator will exist only if the limit is defined in such a
way that oscillatory terms are made to vanish at — .
But with respect to such a limiting process, the limit
of Eq. (3.8) will have meaning as well, as we shall see.
Morcover, the work of the preceding section has
already provided us with a suitable limiting process.
Let us transform the state vector ¥;(¥({) of Sec. IT
to the interaction representation using (3.1). We obtain

W,/ (§) m gttt f aTe* el Te KTy, (3.16)
e

3F. J. Dyson, Phys. Rev. 75, 486 (1949).
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which we may write, using (3.8), as

. 1]
Vi me]| dTeTUE, T @.17)
Now - .
r—.L—- (M= hm € dTe"‘/(T) (3.18)

is an example of the kind of limiting process we need.
1f f possesses a genuine limit as 7—— o, the L opera-
tion yields the same one; but if f oscillates as T~——w,
the L operation gives 0. So we will take

0
U(hy~o)=lime| dTeTUET). (3.19)

-0 A

In an analogous way, we define
U(w,f)=lime| dTeTU(T,s), (3.20)
= limef .0, )

etc. All the relations are now true that can be obtained
by setting ¢ or lo équal to == as in the integral equa-
tions of the interaction representation. One may show,
for example, that Eq. (3.11) does have the limiting
form

¢
Uty —w)=1—=i| &'VEU®F, —=). (3.21)
-

It is well known that ift the notation of the interaction
representation Heisenberg’s § matrix takes the form
U(e, — ). It is clearly a matter of indifference at
this point whether we define S by applying the two
limiting processes (3.19) and (3.20) to U(4 &) or by
applying to (3.21) any limit that will give the usual
meaning to the oscillatory integrals, so as to obtain

U(es, ~o)mS=1—i f BVEYUE, —»). (3.22)

We may now substantiate the claim that sensible
results follow from allowing /o to tend to —« in Eq.
(3.8) according to the rule (3.19). If we use the com-

pleteness relation,

1=32; 8.)0 @3.23)
we find that U(f, — «) can be expressed in the form
Ul =)

) ) _.__¢ b1
o i E T=E) Hes

Tn view of Eq. (2.8) and the discussion at the end of
Sec. I, we have

U0, =)= 0oy,
U, = )p=ps .

(3.24)

(3.25)

or
(3.26)

GOLDBERGER

The operator U(0, — =), which we shall cali 0¥, is
clearly the one that forms the singular wave-function
matrix of Mgiller:®

@2 @) =(dl¥;). @.27)

Acting on the state ¢;, it produces that eigenstate of the
total Hamiltonian, corresponding to ¢; as an incident
wave. Similarly the operator

U(0, +w)ma= (3.28)
carries ¢; into the eigenstate of the total Hamiltonian
corresponding to ¢; as an outgoing wave:

Qg =y, lim m)w-
Instead of (2.28), we have for ¢, the equation
ViSO =¢GN EN VO,

3.29)

3.30)
where
G E)= lim ——, (3.31,

)= lim oy @31
Let us now establish the properties of the U matrices
with infinite arguments that correspond to Eq. (3.6)
for finite times. It can easily be seen from (3.5) and
(3.20) that, for example,

U, y=U(,0U(0, 1), (3.32)
and thus by (3.19)
U(w, ~o)=U(w,00U(0, —=). (333)

Now U(w,—~e) is S and U(0, —w) is 2%, but
U(x, 0) remains to be discussed.
Equations (3.5) and (3.6) tell us that

U Uty )= Ulte, YU L) =1, (3.34)
Since the U’s are unitary for finite times, we have
Ut t)=TUlto, O (3.35)

If we apply either of the limits (3.19) or (3.20) to the
relation (3.35), it remains unchanged, and thus

Ulx®,0)=U(0, o)t (3.36)
So Eq. (3.33) may be rewritten
 SmQEIR, (337

We must still investigate such products as
U(=w,0)U(0, — ). But Egs. (3.23) and (3.36) yield
at once
Ul=®,0)U(0, — o) =g

= L1 o)W Ny

=TidNoi=1 (3.38)
3 N iskab. Selskab, Mat.- Medd.
TR eV s
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with the use of the limiting normalization to unity of
the ¥, Similarly,

U(w,0)U(0, 0)=a=1aIml,  (3.39)
However, the @'s are not necessarily unitary, since
QAR o T, Y N () (3.40)

is not necessarily 1. If there are bound states among
the eigenstates of I7, that is, states of encrgy less than
that of any eigenstate of K with the same symmetry
quantum numbers, then the ¥; are not a complete
set, and (3.40) may be restated as

QWQE e 1= o V)V
where the ¥, are the bound states, satisfying

(3.41)

Hya=Esbe. (3.42)
In order to verify directl, what is implicit in the
preceding equations, namely,

QY =0, (3.43)
as well as that

QDY D =g, B.44)

let us use (3.16), (3.19), and (3.20), which yield

Q&Y= lim ————\b (3.45)

10" ¢xf(K—E)

where ¥ is any cigenfunction of I with eigenvalue E.
For a bound state, K—E can never vanish, since X
has no eigenvalues as low as E; hence the relation
(3.43). For a state in the continuum, we have

B = (1= GE(E)V )W) = (3.46)
-d‘:;;(x——‘b ( (EYWW®=¢ (3.46)

by Eqs. (2.28) and (3.30); hence the relation (3.44).
‘The matrix elements' of the S matrix may be com-
puted as follows: From (3.24) and (3.25) we find that

Ul —w)=e™ ;e 519, 0Np;,  (347)
and so
VOUE, —o)=T; o:)eil e F-E0yy, ) g, (3.48)
Substituting into (3.22), we have
S=1=% ; ¢)2rid(Ei~ E)Rifés
S&J*(W] SW/)"‘-’/" 2xi5(Ei~EpRi;.
Anotl.or i form ided by sul
Eq. (3.39) into the dcﬁnmon oi Siss
Sim(@il a0 g7
=(@C26,|QHg) = (WO |Yy). (3.51)
Qur final task is to prove that the S matrix is unitary.
‘This may be done in & variety of ways. Foxenmple,

(3.49)
(3.50)
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Eq. (2.21) and the analogous equation involving the
incoming wave state vectors ¥~ may be made the
basis of such a proof.! We shall proceed from the
connection between the S matrix and the 2 oper-
ators [Eq. (3.39)]. We have

S1S=QHIQ-IRE QE)
=0 =T, Yui¥e O
=1=0®1 Y)Y, (3.52)
The second term is effectively zero, since 3 operating
on a state ¢; produces one of the states y,* [according
to Eq. (3.27)] which is orthogonal to the bound states
Ve Thus we have completed one-half of the proof:

S1S=1. (3.53)
The remainder of the proof is as follows:
SSt=QEQHIQEIQE)
= 1= 2O Y)Y =1, (3.54)

since ¢ produces a state ¥ which is orthogonal to
the o7
IV. EXAMPLES

Our first example is a discussion of a mnering
process in which there are two potentials acting.
Problems which fall into this category are the scattering
of particles under the combined influence of Coulomb’
and nuclear forces (the actual case of the Coulomb field
requires a detailed discussion of phase factors, etc.,
which may be carried out explicitly and which, in fact,
yields results identical with those to be discussed
below®); bremsstrahlung, where one has a Coulomb
field as well as interaction with the radiation field; the
analogous problem of meson production in nucleon-
nucleon collisions; the photoelectric effect; etc. Prob-
lems involving two potentials to which the impulse
approximation is applied are best discussed in a slightly
different way.® The motivation for our approach is
evidently that it may be advantageous to treat one of
the potentials exactly and the other approximately;
furthermore, as will be mentioned below, the nature of
the physical question being asked introduces a possible
ambiguity into the mathematics.

At first sight the whole discussion might appear to be
trivial: One would merely replace the basic set of states
¢, introduced earlier, by a set of states x which are
eigenfunctions of K+U, where U is the part of the
potential that is to be treated exactly. Cross sections
would then be obtained from expressions of the form

&l Vlv),

? After this manuscript was com,nk SP.T by S. T. Ma
appeared ('S. T. Ma, Phys. Rev. 87, 652 (19 2) vrh\ch contains
some of the results dnwued in the latter part of this section.
n was, neveru\eleu. felt desirable to include them in the interest

KF nch and M. L. Goldberger, Phys. Rev. 87, 899 .
S e e G B R 83, 178 1053
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where V' is the additional potential. Let us see to
what extent such a procedure is legitimate.

The, difficulty arises from the fnct that the cross
sections for the p ioned above are cl
in terms of Lmly noninteracting final states. The true
state vector is defined by the integral equation

(U+ e, @41

Vgt

where ¢, is an eigenstate of X belonging to encrgy E.
(The common energy of initial and final states will be
called E.) The probability of transition to another
planc wave .tate ¢ is, as we have seen in Sec. II,
proportional to the absolute square of

Roa=(#s| Rlday=(ds| U+V [¥at). 4.2)

This is clearly the quantity of physical interest, the
transition rate into a frue plane wate state, $». We shall
see that in many cases the expression for R, in Eq.
(4.2) can indeed be written in the form (x|V{¥*)
alluded to above, but only with @ suilable choice of
boundary conditions on x.'°

Let us introduce state vectors analogous to the ¥4
used previously: These are the solutions x»™ of the
problem with V=0 defined by

XV =gat “43)

Uxa&.
E—K—ie

Substituting for ¢ in (4.2) and using (4.1), we find that

Rie= (0| Vxa®)+ s [ Uldd).  (44) -
Tt is very easy to show! that
G| Ulge)= (8] Ulxet), 4.5)
where x.* is defined by
1
Xe "’-¢.+—'-Ux.‘*’ 4.6)

—K-+ie

The second term in (4.4) is thus simply the scattering
amplitude which would be found even if V were zero.
In many applications this term is zero; for example,
in the case of bremsstrahlung there is a photon in the
final stat and consequently the matrix element will
vanish. It docs not vanish in the case of combined
Coulomb and nuclear scattering. The first term shows
that the famous incoming wave solution" x3, which
has frequently been a source of confusion, appears
quite naturally.

# K. Watson, Phys, Rev. 88, 1163 (1952) The rsult expressed
in (4.4) below has aiso been obtained by Watson (without the

m:md ‘term). Ilis derivation is quite similar to ours.
¥ N, F. Mott and IL S, W. Masscy,, The Theory of Ahm#
Collfdm (Oxlord Un Press, Louﬂon 1933), ;Lh
Sommerleld, mlma (Freddck Unger Pul
Oompany, New Yo:k, 1947), p. 457,
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‘The very implicit dependence of ¥¢* on U may be
made more explicit by remarking that ¥, also
satisfies the equation .

(L TPV N I —
et

Since it is important to realize that the original bound-
ary conditions on ¥, introduced in (4.1) are being

maintained eﬂ‘ecnvdy in (4.7) we shall derive this
result. We write

V=gt

W @)

1
— (U "
E-K-U- V-H.( +he.

1
E—K—U+ie

as in Eq. (2.10). Subtracting, we have, after some
manipulation,

Yot m x4

“8)

X =gat U

1
E~K~U—V+ie
whichis the solution of (4.7). In the case where V is
small, Eq. (4.4) becomes approximately

Ru(s |V xa®)+(00| Ulxa™).  (4.10)

Equation (4.10) takes the potential U into account
exactly as long as one is content with first-order
accuracy in V. It is to be noticed that to second order
in V there is an additional U dependence, since

Vxet®,  (49)

Ve (411)

1
E—K—U-tie

In the case of the photoelectric effect or the process
x*+d—2p one is confronted with a slightly new
problem One is dealing with an initial state which,

Ithough it lies in the is iall ab\mnd
state. Let us proceed from first principles and compute
the transition probability directly. We shall keep in
mind, for the sake of terminology, the process x*-d
—»2p. The physics of the problem leldl us to the state
wvector W49 defined by

1

@0 = Py e
Ot R —vT

where ¥ represents the product of a plane wave meson
state vector and a bound deuteron state vector. s
satisfies the integral equation

1
W
Eg—K-+se -

where U is the deuteron potential. The meson coordi-
nates are conmned ina completcly trivial way in this
:equanon since there is no interaction. It is convenient,
however, not to make an explicit spmuom We now

Vet

15 SN (4.12)

Vom (413)
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ask for the rate of transition into a plane wave state
in the usual way:

a
Nuum (a0 s D) (414)

(We must, of course, keep e finite in order that the
necessary partial integrations can be carried out.) We
shall cvaluate (4.14) at ¢=0. As in Sec. II, we obtain

Natbse= —igs| U+ V| ¥al¥da | Wat)o+cc.  (4.15)
The evaluation of (¢s|We(”) proceeds as follows: First
write ¥, in the form

Voo (416)

4 %.)

VO =
E~K—~U—V-+ie

1
Ey—K—=U—=V+ie

9

Then
<¢.|w.f-»>-<¢.w«)+<¢.

1
AP .
ACAR NG Py
1
Eo-K-+ie

+ <¢o
1

P S —
E—~K—U—-V+ic

(U+7)
¢.>
%)

+{p——— yPavAGALY ¥ao—va)
- <¢blh—ml/¢'>

+<¢.l—£.—_l?_;:w+m.w>

-(¢.M>+<¢.]

Eg—K+ie

1
- U+V|¥,). (4.17,
E.—T.-Ho“.[ | ) @.17)
Proceeding in the now familiar way, we deduce
Wsa=2r|(ds| U+ V[V |B(E~Es), (4.18)

where we now imagine the limit e—0* and hence
V0=, Now we shall transcribe this matrix
clement in a manner similar to that used in connection
with (4.2). This time, however, we substitute for ¢,
from the cquation
X0yt

1
Up.  (419)

E—K—U—is

405

The common energy of ¢ and ¥, is again denoted
by E. We write

Rum(@al UV 19
=TIV V)
1
R =l
=($] Ul¥e®)+00 [ V[¥at)
1

"<¢'l iy wad “'m>

= GUX IS PHOI V) -
— (& Ul —¥o).

Finally

Rium (s |V ¥+l Ul (4.20)
In the class of examples being considered, where o is
the product of a plane wave state and a bound state,
the second term vanishes. Hence the transition proba-
bility per unit time becomes

eam=2x|(xs | VIWe®) | ¥(E~Ey).  (4.21)

It is perhaps worth noting that Eq. (4.21) as well as
the analogous one, for an initial continuum, contained
in (4.4), would not be correct with x, written in
place of xs.

As another example of our formalism, we shall
present a rigorous theory of the so-called “pick-up
process.”? The general category covered by this ex-
ample is considerably broader in that it applies to

llisions quite g lly. For definite-

ness, we consider the following idealized problem: A

proton is bound to a fixed scattering center by a

ial U and is bombarded b; with energy

E; which interact with the proton through the potential

V. The neutron and proton may be bound together by

V to form a deuteron and we wish to compute the

transition pmbabxhty per unit time for producmg
deuterons.

We introduce the state vectors ¥, and ¥, which
satisfy the equations

(K+UWom=Eds, (K+VNy=Ep;, (422)

where ¥, represents the initially bound proton and
incident neutron. and ¥, the deuteron (with its center
of gravity motion). ¥, the complete state vector of
the system, can be seen from the physical boundary
conditions to be the solution of the integral equation

1

YOyt Vo, (4.23)

E~K—=U+is
1 G, F. Chew and M. L. Goldberger, Phys. Rev. 77, 899 (1950).
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namely,
1
W) gt e V. 4.24
e

The transition probability of interest is given by
A .
Nou'm"5](\%‘""’"’"‘""”"’)]'. (4.25)

which we again mmp;au at (=0. We find that

Nobpym —i(f| UK |9 e (4.26)
Welw®)

-(hhln)+<vhl V|¢o>

~elvo+ (w

1
Ei~K—U—V+ie
Ei~K—V+ie

1

»
ol v

v [E;— K—~U+ie E—K—U—V+ie

N

=Wslvot {Wsl VIvo)

Ei—E +ie
+WAN U=, Ulva)).
From Egs. (4.22) we find that

Wil Vo=@ U Vo)

= (B~ E)@r|¥o)~ ((K¥s o) = s K |¥a)}.  (4.28)
The second term in (4.26) reduces to a surface integral
which vanishes in the limit of infinite quantization
volume. Thus

4.27)

1
() U|w@), 4.29;
Wrl¥®) m(vhl [¥@). @429
We find immediately that
o= 2x | (b | UV |B(E~Ey),  (4.30)

in the limit e—0*, W(W—y™®), We shall not discuss
various methods of approximation which have been
developed to evaluate (4.30); this will be taken up in
a separate paper by one of us (M.L.G.) in collaboration
with Chew."*

‘The form of Eq. (4.30) would seem to be somewhat
surprising, in that it is not at all the result one would
intuitively write down. The interaction V between the
projectile and the bound particle is buried in a compli-
cated way. It is not difficult, however, to deduce from
(4.30) a more natural looking result, Calling the
common cnergy E, and substituting the explicit form

WEquation (4.30) has also been derived independently by
G. F. Chew and by G. C. Wick (private communication).
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for ¢+, we have

W Uly®)

1
-(MVN-H-(W Um

=Wl UV

1
+{ ——————U¥/|V . (431
<E~K— UVt VilVIve ). (431

We now define a new state vector ¢ which is the
solution of

1
=) —— Uy, 4.32)
12 W’+E—K—V—i¢ (3 432

namely, '
YO =yt Uyy. (4.33)

E—-K-U-V—ie

Thus (4.31) may be written, using (4.33) in the second
term, as

W UIWS) =@V I+ Ulvo)
~@rAVive. (439

The last two terms lead to the surface integral dis-
cussed after Eq. (4.28) and may be dropped. Hence
we have proved that

WAUWS)=@O V). (4.35)

This new form for the transition matrix element is the
one which one would guess for the result. The reci-
procity relationship expressed by (4.35) is the analog of
a similar one quoted in Eq. (4.5).

V. SELF-ENERGIES

So far we have restricted ourselves to the considera-
tion of Hamil in which the i V induces
a negligibly small shift of the energy levels in the
continuous spectrum. But in order to discuss, for
example, a theory of quantized fields, we must deal
with the question of self-energies that are not infini-
tesimal. (The fact that for elementary particles without
extension they often turn out to be infinite is without
significance for our treatment; we may keep in mind,
as an example of a finite theory, that of electrons and
phonons in a lattice.)

Let us suppose, then, that the eigenvalues of the
total Hamiltonian H are E, while those of the portion
K of the Hamiltonian that we have chosen to call
“free” or “unperturbed” are &,; that is,

(K+-Via=EW ©.n

Kou= Euta. (5.2

For simplicity, we will assume that there are no bound
states in either case.

and
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Now it is essential to note that the energy of the
colliding systems, even at infinite separation, is nol
given by the &, of the “initial” state, but by E,. (For
instance, the energy of two distant electrons at rest is
not the sum of their mechanical masses, but of their
total masses, and this includes a contribution from the
interaction with the electromagnetic field.) Now in
order to describe the scattering process correctly, one
must assign to the incident train its correct frequency,
and thus K must be modified formally so as to make
its energy spectrumwsoincide with that of K4V before
it can be used as in Sec. II.

If A, is defined by
Ay=E,~ 8, (5.3)
and the operator 4 by
A=T. o)anidn 54
then
(K+4)¢a=Endn. (5.5)
We may now write
H= (K+8)+(V=-a), (5.6)

and apply the methods of Sec. II in full, since the new
interaction (V'—A) produces no energy shlf
In place of Eq. (2.11) we have

1
LY () Y E—C 7 ©(0), (5.7
¥,9(0) ¢,+E,—(K+A)+i.(y A)¥,0(0), (5.7)
and in place of (2,10),
O Yo S — X
¥ (0) =g+ E—K—Vii (V=a);.  (58)

In virtue of (5.3) and (5.4), we may write (5.8) in the
form

¥, (0) = +——- V—-a (5.9,

O=brt e (V=000 69)
It is clear, then, that the computation of ¥; requires a
knowledge only of 4; and not, of the energy shifts of
the other states.

‘The question of the dctermmstmn of A; has been
discussed by Pirenne;* later he has shown'® that his
appronch is fully equivalent, in the case of quantum

, to the
procedure usually adopted in recent yems We will base
our remarks on his ideas,

We note first that the R matrix element from which
cross scctions arc computed, is, by analogy with Eq.
(2.14), given by

Ry(e) (| V= A1 %,(0))
=@ V=ad¥,0(0)),

* Jean Pirenne, Helv. Phys, Acta 21, 226 (1948).
#Jean Pirenne, Phys. Rev. 86, 395 (1952).

(5.10)
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or, using (5.9),
Riy()=(8:/ Ve

V=4,

¢l>
(s.11)

Now we know that as ¢! and L tend to infinity, Ri;(¢)
must tend to 0 since otherwise the cross section would
be infinite, or at least dependent on the normalization
volume. Hence for an interaction V that produces level
shifts which are not infinitesimal, the term AJ; must
be canceled by a portion of the other two terms on the
right-hand side of (5.11). Thus the expression,

T e
“I.( ')Er'l'A/- K—Viie

—Bdi;

n,-<¢s|wz¢,>+(¢.~\(v—m

1

— _(V-a
e ALY

$:), (5.12)

must be of the form of an infinitesimal plus a term
proportional to d;; that does not vanish as e—0 and L
tend to infinity. It is the latter term that Pirenne refers
to as a “singularity.” If we use the symbol W(F;,) to
mean the “singularity” in Fy; at §=mj then the self-
energy as determined by the relation

A,-,y'_-;,WI<oAV|¢,>+(¢,| -2)

1
- . 643
XA R—vri A’)I"’> } 619

Equation (5.13) may be solved for 4; by the use of
perturbation theory in ¥ or by other means if they are
available,

In order to exhibit the reality of A;, which is certainly
not apparent from (5.13), let us rewrite Eq, (5.11) in
the form

RaRju*
Ry(=@d Vie+E —

——Ady  (5.14)
S e Eotie Bipe (5.14)

Taking the diagonal element and allowing « to ap-
proach 0, we have -
Rirtin T | Ru'8(E= Ea)

|Ral*

(5.15)

=@ VIer+P Z -Ah

where P means principal value. But by analogy to
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Fap (2,210, we can siow that
2ImR;;= =224 | Ru|B(E;—Ey),  (5.16)
and hence (5.15) becomes
|R;A|
ReR;+4;=(8,| V|o)+P 2 . (5.47)

The “singularity” in the right-hand side of (5.17) is
the part that does not vanish for infinite norrnnhzmg

M. GELL-MANN AND M. L. GOLDBERGER

may write

o= W[(wl Vie

+<“'l V=2 - A"I"» .18

s,u —K—-V

It is now clear how to compute any quantity of physical
interest in the case where there are nl(—encrgm If the

volume and is equal to A; The

tesimal and equal to ReR;;. Thus in place of (5.13) we
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is infini- to a is made, our
remarks remain pertinent.
VOLUME 91, NUMBER 2 JULY 15, 1953

The Energy-Momentum Tensor of the Electromagnetic Field inside Matter

N. L. Barazs*
Dublin Institute for Advanced Studies, Dublin, Irdand
(Received December 15, 1952)

‘Two different energy-momentum tenson have been proposed to describe the electromagnetic field inside
ted tensor is

ensor while

With the aid

matter. Abraham sugges!

a
of a thought expenmen: it is shown here dm only the symmetric tensor satisfies the momentum conserva-

theorems

tion and

HERE is an interesting point in the electrody-
namics of moving media which is not yet satis-
factorily setiled. This problem is the following. The
well-known connections in vacuum between the elecmc

shown that only Minkowski’s assumption leads to a
ray velocity (velocity of energy propagation) trans-
forming like the particle velocity. This was considered
as a weighty argument in favor of the nonsymmetrical

and magnetic field vectors E and H, the el ic
energy flux S, and the momentum density g are
S=¢(ExH), g=(1/c)(EXH). From these expressions
it follows that the -energy-momentum tensor Ta(s, &
=1, 2, 3, 4) of the field in vacuum is symmetrical,
since the space part is symmetrical and the time parts
are simply the energy flux and momentum density, re-
spectively, Ty,=(1/¢)S, T,y=cg(p=1, 2, 3), which are
equal in view of the above expressions. Two different
expressions have, however, been suggested for § and g
and so for Tn -when the electromagnetic phenomena
take place in matter. In both cases the space part of
the energy-momentum tensor is the conventioaal
Maxwell stress tensor. For S and g Abraham has re-
tained the expressions vahd for fields in vacuum' and

tensor.

The aim of this note is to show by means of a very
simple thought experiment that only the symmetric
energy-momentum tensor satisfies simultaneously the
momentum conservation and center-of-mass theorems.
(We mean by the latter that the center of mass of the
system is at rest or moves with uniform velocity if no
external forces are acting on the system. This holds in
relativistic mechanics as well, with the proviso that in
different Lorentz-frames we must, in genéral, identify
dn’fercnspomts as the center of mass, We, howvever, will.
alwdys stay in the same frame of refergnce.and so this
will not concern us.)

We imagine now two enclosures not subjected to
external forces. In each a wave parcel is traveling. In
one encl part of the path passes through a perfect,

5o he obtains a tensor.
Minkowski, however, proposed S-c(ExH), g=(1/¢)
(DXB); D=¢E, B=ull, which entails a non-
symmetric energy-momentum tensor. For a long time
Abraham’s suggestion (the symmetric tensor) was
commonly accepted, but quite recently von Laue! has

* Present aildreas: Department of Physics, Univerity of Ala-
bama, University, Alainon

M. von Laue, Z. Physik 128, 387 1950); A Snmmerlcld
“iociradynamik.® Varlesungen ber thsoretishs’ Physih (W,
Kiemon, Wiesbaden, 1948), Vot. 3, pr 293,

nondispersive dielectric (we will simply say glass) where
the velocity of propagation is smaller than in empty
space. In the other enclosure we have an identical glass
rod and an identical wave parcel; its path, however,
does not lead through the glass rod. For this reason in
the latter enclosure, after time /, the parcel and so the
mass associated with its energy would be at a different
point than in the first enclosure. Then if we would
suppose that the glasa rod did not move while the parcel
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