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where we now use the propagator @ in place of G in front of the integral so as to obtain correct external-line wave
functions for the S matrix.

The only vertices which get inserted by the factor in square brackets in (20.36b) are the bare vertices S, and
V(airs. Therefore (0, |¢'[0 — ) may be expressed in the compact form (12.20), but with G replaced by ®,,
provided the symbol 5/8¢ is no longer taken literally but is uriderstood to yield GS:G when acting on G and S.1
when acting on S, to have no effect on ¥ (ans, and to insert (in all possible ways) into any fictitious quantum loop
merely one more vertex V(aig having the same orientation as all the other vertices already in the loop.* With this
understanding it is easy to see that (20.35) then yields also Egs. (12.21), (12.22), and (12.23), with the modification
G — O, applied to all external lines. Chronological product amplitudes defined in this way may be used directly
in (13.6) to calculate the S matrix.

The consistency of these simple rules with previously obtained results is readily checked. For example, if non-
causal chains are reinserted into Figs. 2(b) and 3(b) the resulting primary diagrams for the lowest-order radiative
corrections to the one- and two-quantum amplitudes are precisely those obtained by the present prescription. We
note in particular the sufficiency of the vertices Sn and ¥ (aq)s and the uniform orientation of the latter around any
fictitious quantum loop.

% It will be noted that the operators 5/5¢%, when redefined in this way, are still commutative.
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The basic momentum-space propagators and vertices (including those for the fictitious quanta) are
given for both the Yang-Mills and gravitational fields. These propagators are used to obtain the cross
sections for gravitational scattering of two scalar p;rucla scattering of gravitons by scalar particles,

scattering, two-g \ ticle pairs, and graviton bremsstrah-
lung Specnl features of these cross sections are noted. Prob]ems arising in renormalization theory and the
role of the Planck Jength are discussed. The gravitational Ward identity is derived, and the structure of
the radiatively corrected 1-graviton vertex for a scalar particle is displayed. The Ward identity is only one
of an infinity of 1denm|:s relanng the many-graviton vertex functions of the theory. The need for such
identities may be eli in principle by ing radiative fons directly in coordinate space,
using the theory of manifestly covariant Green’s functions. As an example of such a calculation, the con-
tribution of conformal metric fluctuations to the vacuum-to-vacuum amplitude is summed to all orders.
The physical significance of the renormalization terms is discussed. Finally, Weinberg’s treatment of the
infrared problem is examined. It is not difficult to show that the fictitious quanta contribute negligibly to
infrared amplitudes, and hence that Weinberg's use of the DeDonder gauge is justified. His proof that the
infrared problem in gravidynamics can be handled just as in electrodynamics is thereby made rigorous.

canonical or Hamiltonian theory and the other on the
manifestly covariant theory of propagators and dia-
grams, So far no rigorous mathematical link between
the two has been established. In part this is due to the

1. INTRODUCTION

N the first two papers of thxs series! two dxstmct

ical o the

of gravity were developed one ba.sed on the so-es.l.led

* This research was supported in part by the Air Force Office
of Scientific Research under Grant AFOSR-153-64 and in part by
the National Stlence l-ound&llon under Grant GP7437.
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ev. 160, 1113 (1967); preceding paper,
M 162, II9S (1967r1‘hese papers will be referred to as I an

ly. The notation of the present ﬁaper is the same as

um of ll whwh should be consulted ior the definition’ of un-
familiar xymboh e.g., Sa for the n-pronged bare vertex and
Vieirs for the asymmetric vertex wuphng real and fictitious
quanta.

kinds of questions each asks. The canonical theory
leads almost unavoidably to speculations about the
meaning of “amplitudes for different 3-geometries” or
“the wave function of the universe.” The covariant
theory, on the other hand, concerns itself with “micro-
processes” such as scattering, vacuum polarization, etc.
Some of the questions raised by the canonical theory
were explored in I In this third and final paper of the
series we examine some of the consequences of the
covariant theory.
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Armed with the formalism constructed in IT one can
in principle carry out the calculation of any “micro-
process” to any order of perturbauon theory m a
manner which is and
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rather than in momentum space. An example of such
a calculation is given in Sec. 7, where the contribution
of conformal metric fluctuations to the vacuum-to-
‘vacuum litude is summed to all orders. The calcu-

ous except for the arbxtrary high-energy cutoff which
must be introduced to render divergent integrals finite.
A few of these calculations have actually been per-
formed, and the only thing which prevents more of
them from being done is the extreme tediousness of
the algebra involved and the lack of any experimental
mouvatlon for them. It isa plty that Nnt\n‘e dxsplays
such i to so and b ! a sub-
Ject, for the calculations th are of iderabl

intrinsic interest. The present paper contains several

lation, which is manifestly covariant throughout,
makes use of an integral representation for the ampli-
tude. A resumé is given of that part of the mathe-
matical theory of covariant Green’s functions which is
needed.

Section 8 concludes the paper with a review of
Weinberg’s treatment of the infrared problem (see Ref.
37, 1f Ya.ng-Mills quanta are assumed to be massless
t.hen, since they can act as their own sources, they give
rise to t.he speclal mfrared divergences which plague
Wemberg showed that gravity

examples. They are by no means but have
been selected as useful landmarks in a still largely
unexplored territory. Not all of these were originally
carried out by the author, but it is hoped that their
unified presentation here will make their results more
accessible than hitherto.

Section 2 begins with the rules of calculation in
momentum space. The basic structural elements of the
theory, namely the propagators for real and fictitious
quanta, the vertices Ss, Si, V(ans, and the coupling
with matter fields, are given for both the Yang-Mills
and gravitational fields. The standard Feynman rules
are summarized. The results of a few Jowest-order
scattering calculations based on these rules are given
and discussed in Sec. 3. Included are the cross section
for gravitational scattering of two scalar particles, the
cross section for scattering of gravitons by scalar
particles, the corresponding annihilation cross section,
and the graviton-graviton cross section. Section 4 is de-
voted to the problem of gravitational bremsstrahlung.
The role of the energy quadrupole moment tensor and
the absence of the forward peak at high energies, charac-
teristic of photon bremsstrahlung, are noted.

Section 5 discusses some of the problems which arise
in renormalization theory. Although the Yang-Mills
theory looks as if it may be renormalizable (provided
its mfrared dnﬂiculues can be disposed oi),

Tousl

i escapes these di lties; its infrared di-
vergences can be handled by the snandard methods
familiar in ordinary quantum electrodynamlcs His
proofs, however, were mcomplete, since he did not

ve il a fully elab theory. In
particular he used the DeDonder gauge without taking
into account the fictitious quanta. It is not difficult to
show that the fictitious quanta contribute negligibly
in the infrared limit. Weinberg’s results are therefore
rigorous.

2. RULES OF CALCULATION IN
MOMENTUM SPACE

We begin with the vertex functions for the Yang-
Mills field interacting with itself. We have seen in IT
that when the standard field variables are used only
Ss and S, are nonvanishing for this case. In momentum
space these become (apart from a § function expressing
conservation of momentum)

oS
8A4%,8AP, 847" 1
+ (= Py (po— )],

w.h[(?"‘- ol

@n
oS

ics is d ly not r ble in the
usual sense. Tentative proposals for dealing with this
situation are briefly described, as is also the evidence
that gravity contains its own cutoff—at the Planck
length. Illustration of the actual details of the re-
normalization program, by explicit calculation of a
radiative correction, is postponed to Sec. 7.

The gravitational Ward identity and its implications
for gravitational form factors are derived in Sec. 6.
The general structure of the radiatively corrected 1-
graviton vertex is displayed in the case of a scalar
particle. It is emphasized that the gravitational Ward
identity is only one of an infinity of identities relating
the many-graviton vertex functions of the theory. The
need for Ward identities can be eliminated by com-
puting radiative corrections-directly in coordinate space

= —Capet (= 0" 0)
~Car’pa (117"~ 1*"7")
—Casectys (07— 0770) .

.2)

SA%BAF BAY AP

The correspondence of momenta with indices is pou,
P8V, p'y"e”, p"'8""7"". All momenta are incoming
(to the vertex), and momentum conservation implies
p+p'+p"=0 for S5 and p+p'+p"+p"" =0 for Sy
Indices on the structure constants are raised and
lowered by means of the Cartan metric yos. When all
indices are in the lower position the structure constants
are completely antisymmetric.

In addition to the above vertices, the fictitious
vertex V(aip is needed for the calculation of radiative
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corrections. For the Yang-Mills field it takes the form
(2.3)

The propagators for the normal and fictitious quanta
are, respectively,

Viay "y = —iCapyp'* =~ iCays(p*+1").

G—vn/t?, 2.4
G- o/, (2.5)

with #? being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

8s

-
8Qud@er s 8 prin
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field are much more complicated. In this case we shall
employ the momentum-index combinations puv, p'a’r’,

PN, #""¢"'«""". The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-

tum-index triplets. At least 171 separate terms at-
required in the complete expression for Ss in order L
exhibit this full symmetry, and for Sy the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatotially distinct terms?
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S; is
reduced to 11 terms and Sy to 28 terms, as follows:

Sym[—1Ps(p- p'nn° 12 — 1 Po(p p nn*)+1Pa(p- ' now nt )+ 3 Po(p- p'wrn"en )+ Pa(pop v )
=3P "y 0 ) H AP (020 ron ) F A Po (PP n e w ™)+ Po(pop 0 mene)+ Pa(pop'#n™*n™)

&S
-
Pprr a1 8P ursegren

8ulPorer

—Py(p-p'wenn™)], (26

Sym[—3Ps(p-p'n*n" n* )~ Pra(pp w0 0') = 1 Po(p°p 4w 0" )+ 3 P(p 10" "1* n')
+1Pa(p-p' 10 0" )+ 1Pra(pp 0 n ) +EPo(pop w0 )~ L Pa(p P on o n™)

+1Puu(p- p'nn o0 0 +4Pou(p7p 10w )+ 1 Pra(pnp M nron ™y

)+ 3 Pau(pp om0 0

—3Pua(p- p'w o n om0 ) = §Pra(pp M0 w0 )+ 4 P1a(p7pPn 00 ) = 1 Pau(p- p 0P 0" o0 0)

—Pu(pprrron*n™®) = Pra(p?p"™ 0 n™) — Pulpep'on™nw) — Pra(p?p’n*

i)

+Pe(p- p'nron on ) — Pra(peprnnm ) =4 Pra(p- oo g7 n ) — Pra(ppon™prin’®)

— Ps(pop" n enron?) = Pas(p7p o a0 ) ~ Pra(p7p ™o n n®)+2Po(p- p'w 0" n 0 ) 1.

The “Sym” standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair uv, o7, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
seript gives the number of permutations required in
each case.

Expressions (2.6) and (2.7) can be obtained in a
straightforward manner by repeated functional differ-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more efficient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once S is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

@7)

him best we shall not shackle him by describing one
here. We also make no attempt to display Ss or any
higher vertices.

The vertex Vians bas the following form for the
gravitational field :
Voo —

ASym{2p" /78— p"b'on”"

+ @ — P+ 58], (28)

where the momentum-| mdex combinations are pu, p v,
#"0"'7", and the sy ion is to be p
the index pair o7. The propagators for the normal and
fictitious quanta are given by

G (Quort- Moo= Nen)/ P (2.9)
Gomm/p. (210)

* The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other lerms
We g've here what we behzve (but have not proved) to be
expressions containing the smallest number of terms.
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If one wishes to calculate processes mvolvmg the
interaction of the Yang-Mills and/or
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the mass shell, to precisely the forms (2.13) and (2.15)
of h itude of the particle spin. This

field with matter, additional vertices describing this
interaction must be included. As prototypes of such
vertices, we shall display those which arise from inter-
actions with scalar (or pseudoscalar) particles. The
latter particles contribute to the total action functional
an expression of the form

1
sim= [erurtnpaim, @)

where the covariant derivative is defined in Table I
of II and where
#=¢"y, 1G'=-G.", (2.12)

v being the matrix which connects the two forms of a
self-contragredient representation (of the Yang-Mills
Lie group) generated by the matrices G, and —G.",
respectively. We find

&S,
58805
S,
83/ 800A " yi8AP " urs
S,
5500y
S,
8388y 8 @i
L (ron - mpryre— o) (m?— - ')
F PPN B P
(PPN (PR
= eI (P T ). (2.16)

The corresponding vertices which describe the inter-
action of the gravitational and/or Yang-Mills fields
with particles having spin are obtained by straight-
forward computation from the pertinent action func-
tional. The latter is obtained in each case via the

prmcnple of minimal coupling” (which, in the case

— —i(p'*—~p#)Ga, (2.13)

—(GaGst+GeGa)n*, (2.14)
=il (m*—p-p)
+or ], (215)

-

may be proved in each instance as a straightforward
consequence of the gauge invariance of the theory and,
when extended to the radiatively corrected vertices,
constitutes a boundary condition on the Yang-Mills
and gravitational form factors.? [See also Sec. 6.]

It is to be emphasized that the inclusion of addi-
tional fields in no way affects the formal theoretical
structure developed in II. The topology and mvanance
properties of di; remain
One simply permits the field indices 1, J, etc., to extend
over a greater range of values in order to accommodale
the components of the new fields which have been
added. The only differences are differences of detail
such as, for example, the sign modifications due to
statistics which appear when some of the added compo-
nents are those of fermion fields, or changes in the
structure of the invariance group which arise from
baving both the Yang-Mills and gravitational fields
simultaneously present and interacting with each other.*

The rules for combining vertices and propagators
into transition amplitudes are completely standard.
With the notational conventions of the present paper
they may be summarized as follows: (1) An expression
such as (2.1), (2.2), (2.3), (2.6), etc., for each vertex;
(2) an expression such as (2.4), (2.5), (2.9), (2.10),
etc. for each propagator; (3) a factor (—i)/(2x)* for
each independent closed loop; (4) an additional factor
(—1) for each closed fermion or fictitious-quantum
loop, or when necessary to assure antisymmetry of
fermion amplitudes; (5) an over-all factor i(2x)* times
a & function assuring total energy-momentum con-
servation; (6) 2 wave function w4 (see Table II of
1I) or its complex conjugate evaluated at x=0 for each
external line; (7) integration over all the independent
momenta.

Gauge invariance may be invoked as a useful con-
sistency check in all calculations. However, it must be
applied to the entire amplitude for a given process
and not merely to a single diagram. It is therefore
algebraically more laborious than corresponding checks
in electrodynamics. It is no longer possible to exploit
charge conservation by following individual lines

3 These are analogs of the electromagnetic form factors. The
gravitational lonn [ac(ors are also sometimes refer to as
form factors.

of gravity, is nothing but the
pnncnple”) from the dis ion functional

P action
in the absence of g 1 and Yang-Mills fields,

* These m, m hcl zhe most important differences. It is worth
ning that when fermion fields are included it is usuall I

by replacing ordmary derivatives by covanant deriva-
tives, the Minkowski metric 7,, by g.», and the volume
element dx by g2 dx. We do not give here the results
of such calculations for particles with spin but merely

point out (what is more useful for the reader) that the ° pierbein

three-pronged vertices, when sandwiched between nor-
malized wave functions, always reduce, in the limit of
zero momentum transfer, with particle momenta on

to nplm the metric field go by a v-abcul
Othervuse the g1 transformation laws are no lon;
B.S. De\\m lnd C. M. DeWitt, Phys. Rev. 87 1|6 (1952)]
e also mention that the combined vierbein-generalcoordinate-
mns{omauon group has the structure of a semi-direct product
n the automorphisms of the vierbein g under general
coordmale transformations. In the combined group only the
ein group is an invariant subgroup. The coordinate trans-
formation gmup is its factor group. ilar statements apply
ang Mills-general coordinate-transformation
lysis of these cases is therefore correspondingly
complica
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through diagrams, for now the conserved quantity—
Yang-Mills charge, energy-momentum—leaks all over
every diagram. Morcover, when Yang-Mills quanta or
gravitons interact with themselves, the closed loops
form traffic jams of spurious charge which can be un-
snarled only by calling the fictitious quanta to the
rescue.

3. SCATTERING CROSS SECTIONS

We now display some of the lowest-order amplitudes
and scattering cross sections which the covariant theory
vields. One of the simplest is the amplitude for the
scattering of two identical scalar particles by exchange
of a single Yang-Mills quantum. This has the form

2(27)7% (P + o — pr— p2) Ju(1) - 72(2)/

+exchange and virtual annihilation terms, (3.1)
where

9=t —p=pr—pe, (32

Jaw= H(EE) X G X (P utp0) 5 (3.3)

the X’s being the internal (Yang-Mills group) states of
the particles and the remaining notation being con-
ventional. The same form (3.1) also holds for particles
with spin, but the expression for the current ja, is then
more complicated.

Since the initial and final momenta are on the mass
shell we have the conservation laws

Ja(1)-9=7a(2)-¢=0, (3.4)
which permit the scattering amplitude to be reexpressed
in the form

Fao(1)7%(2) D@+ ja(1)7%(2)
q ¢
+exchange and virtual annihilation terms,

)

3.5
where a factor §(2m)~%(py'+ps'— pr—p2) bas been re-
moved, and the 3-axis has been chosen in the direction
of the spatial part q of the space-like 4-vector ¢. The
first term of (3.5) represents the instantaneous “Cou-
lomb” interaction of the particles; the second repre-
sents a “delayed” interaction propagated by transverse
quanta, the factors jo1 and j.. being separately coupled
to the two states of linear polarization of these quanta.

The corresponding amplitude arising from exchange
of a graviton is

i(4m) %5 (p 2 — pr—p2) T (1)
X (ﬂ“'q"+q"'q"— ,,uv,,fv)T,,(Z)/g!
+exchange and virtual annihilation terms, (3.6)
where
Tw=3(E' By [pup’s 0.8 = (p- ' +mH)]. (3.7)
Again we have conservation laws

Tuw(1)g'=TaW(2)g=0, (38)
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which permit the amplitude to be recast in the form

HTo(1)Too(2)— 4T (1) Ter (2)~ 4T02(1) Tx(2)
— Tos(1) Tos(2) = Too()[T11(2)+T2(2)]
—[Tu()+T(1)1T00(2)}/@+4H [ Tu ()= T=(1)]
X[T1(2)— Tua(2)]+4T0a(1) Tu(2)) /¢

+-exchange and virtual annihilation terms. (3.9)

The first term yields an instantaneous “Newtonian”
interaction, while the second gives rise to a “delayed”
interaction propagated by transverse gravitons. In this
case the factors which couple separately to the two
states of linear polarization are Tyy—Ta and 2Th,
respectively.

From (3.6) it is straightforward to compute the
differential cross section for gravitational scattering
of identical scalar particles in the center-of-mass frame.
One finds®

do GBI (1-+39) (1~ 2)-H 4 (1+1) cost(6/2)

E=1—6E.[ # sint(0/2)
(3 (=) 4 (1) sint(6/2)
v 2 cost(6/2)

2
+(3—1ﬁ)(1+»2)+wsinzo], (3.10)

where v=p|/E and the gravitation constant has been
reintroduced through the units convention 167G=1.
The nonrelativistic and extreme relativistic limits of
this cross section are, respectively,
2
3]

o G* 1 1
)
Q/wr 16 Li?sin?0 o2 cos?}

de
(d—’) — 4GB cottho+tan}o-H 1+ sin0F.  (3.12)
Q/ er

3.11)

In a similar manner one may compute the cross
section for scattering of gravitons by scalar particles.
The relevant diagrams are shown in Fig. 1, the heavy
lines denoting particles and the light lines gravitons.
Diagrams (a) and (b) vanish in the rest frame of the
target particle, and one finds for unpolarized gravitons®

do G'm?*
40 [1+2esint}6] sinh6
+ 2¢(cost36+sin®36) sin?

[cos®30-+sin46

+ &(cos*}0+sin*36) sin¥], (3.13)
(2) = comersnto 19
—) = cos’ s , ..
2/sn_ sindo i
do
(d_) =4Gm?(cos*}6+sin*}6) cot*}6, (3.15)
Q/ en

&C. F. Cooke, Ph.D. thesis, University of North Carolina, 1964
(unpublished).



1244 BRYCE S

L

F16. 1. Lowest-order diagrams for scattering of a graviton by a
material particle. The heavy line denotes the particle and the
light lines denote gravitons.

where e is the energy of the graviton measured in units
of m. It will be noted that these cross sections have no
resemblance to those for Compton scattering, but on
the contrary, continue to display the sharp forward
“Rutherford peak” ch istic of 1 inter-
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demonstrated only in lowest order, by carrying out a
brute-force computation of the relevant amplitudes.
The tediousness of the algebra involved in obtaining
the graviton-graviton cross section may be inferred
from the complexity of the vertex functions (2.6) and
(2.7) which are involved in the diagrams which repre-
sent the amplitude (Fig. 1 with the heavy lines replaced
by graviton lines). Fortunately, the presence of the
polarization tensors in the external-line wave func-
tions, and the momentum condition $*=0 for free
quanta, eliminate many of the terms from these ex-
pressions. Nevertheless, a large amount of cancellation
between terms still has to be dug out of the algebra,
and thxs, combmed with the fact that the final results

actions. This feature is due to diagram (d) of Fig. 1
whose presence, as may be readily checked, is essential
for the gauge invariance of the scattering amplitude.
Owing to the equivalence principle gravitons, like
photons, are deflected by a gravitational field (in par-
ticular by the long-range static field of any material
particle), and the above cross sections are dominated
by this effect.

By the well-known “substitution rule” the diagrams
of F;g 1 yield also the amphtude for annihilation of a
pair of scalar particles into gravitons. We record here
only the low- and high-energy limits of the total
annihilation cross section in the center-of-mass frame:

onr=2rGm*/v, (3.16)
o= (387/3)GCE. 3.17)

The cross section for the inverse process, namely, the
production of a scalar pair by colliding gravitons
(again in the center-of-mass frame) is identical with
(3.17) at high energies. Near threshold, on the other
hand, it is given by

o=2Gm?(—1)"%/e, €>1.

The only elastic process which remains to be con-
sidered is the scattering of one graviton by another.
This process has some unusual features. It turns out
that the helicity of the colliding gravitons is individually
conserved. That is, there is no spin flip, in spite of the
presence of derivative coupling. If both gravitons are
right (left) handed before collision then both are right
(left) handed after the collision. If one is right handed
and the other left handed then they maintain this
relationship also, through the collision.

The helicity of extremely relativistic particles, and
of massless quanta in particular, is notoriously rigid.
In the classical theory, for example, the spin of such
a particle suffers no precession under geodetic motion
in an external gravitational field but remains always
pointing parallel or antiparallel to the trajectory. How-,
ever, no general principle has yet been discovered
which implies that helicity conservation must hold to
all orders of perturbation theory. It has so far been

(3.18)

are sunple, leads one to believe that there
must be an easler way. The cross sections which one
finds are

doyy do—_ - “roos‘wlsin‘%ﬂ
Jda de  Lsin9 cose
+4—§sin‘9]’, (3.19)
doy_
R G20
aQ sin‘}8

showing again the forward Rutherford peaking.

We shall not record here the corresponding cross
sections involving Yang-Mills quanta, since these
depend, in their finer details, on which Lie group is
chosen as generator of the Yang-Mills group and on
which representations are chosen for the material
particles. There is also a serious difficulty with the
Vang-Mills field in regard to the infrared catastrophe,
which will be discussed in Sec. 8. Since our primary
interest in this article is the gravitational field, we
refer the reader with a special interest in Yang-Mills
cross sections to the dissertations of Remler® and
Dotson.” It is, however, perhaps worth remarking that
in the case of the scattering of one Yang-Mills quan-
tum by another the phenomenon of helicity conserva-
tion is again found to hold, with or without the in-
clusion of graviton exchange forces in the total ampli-
tude, and regardless of the choice of the Lie group.
Moreover, an extension of the helicity conservation
rule to processes involving real gravitons in interaction
with Yang-Mills quanta apparently exists. Thus indi-
vidual helicities remain unchanged when a graviton
and 2 Yang-Mills quantum collide elastically. If the
diagrams contributing to this process are turned on
their sides so as to yield the amplitudes for annihilation
of two Yang-Mills quanta into a pair of gravitons (or
the reverse process) further selection rules emerge. One

¢E. A. Remler, Ph.D. thesis, University of North Carolina,
1964 (unpublished)

7A. C. Dotson, Ph.D. thesis, University of North Carolina,
1964 (unpublished).
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finds that it is impossible to produce two gravitons
having opposite helicities by annihilation of Yang-Mills
quanta, or conversely to produce a Yang-Mills pair
having opposite helicities by the reverse process. The
quanta in both the initial and final states must have
identical helicities if the amplitude is to be nonvanish-
ing. Helicity selection rules exist even for.the process
in which two Yang-Mills quanta coalesce to produce
a single Yang-Mills quantum and a graviton. If both
initial quanta have the same helicity the final quanta
must have this helicity too; if the initial helicities are
opposite the final helicities must be opposite. The same
obviously holds for the reverse process.

4. GRAVITATIONAL BREMSSTRAHLUNG

Since the problem of gravitational radiation from
accelerating masses has bedeviled classical relativists
for years it is a pleasant surprise to discover that its
treatment within the quantum framework is quite
simple.® Consider a scattering diagram in which one of
the lines represents a scalar particle (real or virtual)
of momentum p. Let the diagram be modified by the
emission of a graviton of momentum ¢ from this line.
If the momenta of all lines subsequent to the inserted
graviton vertex are held fixed while those prior to the
vertex are adjusted in such a way as to conserve
momentum and keep external lines on the mass shell,
then the only additional effect of the graviton emission
is to introduce into the corresponding amplitude, a
factor
egt*e ™ 1

@m) /g

(PR Pt a) = malmttp- (0+9)]

(p+or+mi—i0
which follows from Eq. (2.15) and Table IT of II.
Alternatively, if the momenta prior to the vertex are
held fixed we get a factor which differs from (4.1) by
the replacement ¢ — —g.

If the graviton is emitted from an external line these

factors reduce to
exes™ 1 puprtdn(pugitpigu—nwp-g)
@y /@ ¢+ 2np-g—i0
where n=+41 or —1 according as the external line is
outgoing or incoming, and p is held fixed on the mass
shell. In the long-wavelength limit g— 0 (4.2) itself
reduces to

, (&)

, (42)

1 ety

43)
2(21)’”\/9" p-g—in0’
comparison is actually unfair. The questions which
classical relativists ask are usually quite deulled-—e £ the precise
damped motion of radiating sources, or the r properties
of coherent waves of large amplitude—and au mevnub]y much
more difficult.
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and simply multiplies the original amplitude. This
limiting form actually holds for all external lines, re-
gardless of the spin character of their associated
particles. It even holds when the external line is a
graviton line, provided the emission vertex is inserted
not merely into a single diagram but into the sum of
all diagrams contributing to the original amplitude.
This may be verified in a straightforward manner by
plugging in the 3-pronged graviton vertex (2.6) and
eliminating the terms invoiving ¢. Of the remaining
terms only those survive which yield a net contribution
of the form (4.3); the rest disappear in virtue of the
gauge invariance of the total original amplitude.®

The multiplicative factor (4.3) exhibits the well-
known infrared divergence and can be obtained from
a purely classical model. We note that the infrared
divergence shows up only when the emission takes
place from lines on the mass shell; it does not occur
when the emission is from internal lines of a scattering
diagram. The external lines therefore dominate the
soft graviton emission. This means that the precise
details of the scattering process have little relevance
in the limit ¢— 0, and that the long-wavelength end
of the emission spectrum is determined primarily by
the asymptotic trajectories of the incoming and out-
going particles, just as in the case of photon brems-
strahlung. For wavelengths large compared to the
space-time region in which the collision takes place
(the size of this region is determined by the magnitudes
of typical energies exchanged in the collision) the effec-
tive graviton source is a stress tensor of the form

Tw(z)= Z” q,.m,.V,.‘V."/’“ 8(x—Var)dr, (44)

which idealizes the particles to classical points colliding
at the coordinate origin. Here m, and V, are, respec-
tively, the mass and 4-velocity of the nth particle,
and the sign factor ». tells whether the particle is in-
coming or outgoing. The summation is over all the
external lines, and the velocities are subject to the
energy-momentum conservation law :

2 namaVa=0.

The classical emission spectrum is obtained by pro-
jecting (4.4) onto the graviton wave functions %,,. (x,q)
(see Table II of II). The corresponding quantum
amplitude is

(4.5)

¥ f U s* (0,0) T (2)dx
namales V) o
=ix S g dreierns(e—Var
lg e x/; r e 55 (2 )
M *-Va)?
L @6

= 20202/ Varg—ina0

*The gauge invariance holds in every order of perturbation
ry.
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which, in view of the relation pa=m,Va, is just (4.3)
summed over all the external lines,
When the collision is nonrelativistic (4.6) reduces to

1(2rg) ey AT eu*, 47
where the graviton gauge is chosen so that the compo-
nents e;° of the polarization vectors ey vanish, and

AT is the change in the spatial integral of the total
3-stress dyadic as a result of the collision:

A$=Adex= 3 NaPaVa, (4.8)
T= X 8(7n2°)pavad(x—Var?), 4.9)
Va=Va/Vo0=pa/ En=pa/mn. (4.10)

Now it is well known! that energy-momentum con-
servation permits the integral of the 3-stress dyadic
to be reexpressed as one half the second time derivative
of the second moment /"xxTodx of the energy density.
Moreover, since e,*-e,*=0, the trace of AT may be
removed from (4.7)." Therefore the emission amplitude
may be written in the alternative form:

12rg) e, > A(PQ/dP)-es*, (4.11)
where A(d?Q/df?) denotes the change in the second

time derivative of the energy quadrupole moment
tensor

(xx—31x?) Toodx (4.12)

showing that soft gravitons are emitted predominantly
in the quadrupole mode.

It is of interest to examine the angular distribution
of the emitted radiation. From (4.6) one sees that each
external line makes a contribution to the emission
amplitude, which has an angular distribution of the
form

sin%
(4.13)
1—v cosf

where 6 is the angle between v and g, and ¢ is a helicity
phase angle. In the case of photon bremsstrahlung the
sinf appears linearly instead of quadratically in the
numerator, with the consequence that for relativistic
collisions (v=~1) the emission is concentrated sharply
in the forward directions of all the particles (initial as
well as final). This peaking may be attributed to the
individual Lorentz-contracted Coulomb fields, which

19 See, for example, L. D. Landau and E. M. Lifshitz, The
Classical Theory of Fields, translated by M. Hammermesh
(Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1962, rev. 2nd Ed.

HIn view of the nonrelativistic energy conservation law
. nna(mn+4pn-va) =0, this trace is just twice the rest mass lost
in the collision and alrudy vanishes for elastic collisions.

BRYCE S. DEWITT

162

resemble bundles of plane waves having momenta con-
fined to narrow cones. These bundles (particularly
their outer regions) have difficulty readjusting to the
altered particle trajectories arising from the collision
and hence partly escape as radiation.

In the gravitational case the sharp forward emission
is absent.?? In fact for an extremely relativistic collision
(Ipa| =E.) which is confined to a plane (eg., 2-
particle scattering) it is easy to verify that the total
sum (4.6) yields an amplitude which vanishes for
emission in the plane.® This implies that, unlike photon
emission, graviton emission is a cooperative phenome-
non which cannot be traced to the individual particle
fields. Indeed the real gravitational field of a particle,
namely the Riemann tensor, falls off as the inverse
cube rather than the inverse square of the distance,
and hence its outer regions contribute negligibly to the
emission. This has obvious implications for investiga-
tions of classical 2-body radiation as well as for at-
tempts to introduce Weizsicker-Williams approxima-
tion schemes into quantum calculations.

5. RENORMALIZATION AND THE
PLANCK LENGTH

In lowest-order perturbation theory the formal rules
of the manifestly covariant theory yield results which
agree with the classical theory in the correspondence
principle limit. In higher orders, divergences appear,
just as they do for other field theories, and almost
nothing is known about how to extract finite and
physically meaningful radiative corrections from the
results. In the case of quantum gravidynamics the
severity of the divergences is such that the theory is
not, by standard criteria, renormalizable. This is due
to the quadratic momentum dependence of the vertices
Sa(n>3), which in turn may be traced to the de-
pendence of the light cone on the background field,
i.e., to the field dependence of the coefficients of the
second time derivatives appearing in S;. Thus by
counting momentum powers one finds for the super-
ficial degree of divergence of any diagram

D=—2L+2% V.+4K, 3.1
where L; denotes the number of internal lines, V, the
number of n-pronged vertices, and K the number of
i Now it is not

difficult to show that

K=L— T Vat1. (5.2)

1 This was first vpomted out by R. P. Feynman in a mimeo-
graphed letter to V. F. Weisskopf dated January 4 to February
11, 1961 (unpublished).

 Introducing unit vectors @ and Qu in the directions of q and
Pn, respectively, one may write the amplitude in this case in the
form

X 2)?

constX }:n.E.l -0, - constX T mmEa(1+2-20),

which vanishes by energy-momentum conservation.,
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Therefore
D=2(K+1), K21, (5.3)

which increases without limit as the order of the
diagram increases.

In the case of the Yang-Mills field the situation is
better. Here we have

D=—2L+Vit+4K, (5.4)

which, in combination with the readily verified com-
binatorial law
LA2Li= T uVa=3V3s+4V,, (5.5)
ylelds
D=4-L,, (56)

where L, is the number of external lines. In order to
compensate the divergences one may introduce counter
terms into the original Lagrangian in the conventional
manner. The most divergent counter term is always the
simplest. It is necessarily of the form constX FauFe,
provided the divergence has been handled in a mani-
festly group-invariant manner. But such a counter
term can be detected by as many as four external
lines. Hence D is never actually greater than zero.
This is quite analogous to the situation which occurs
with vacuum polarization diagrams in quantum elec-
trodynamics: Although L,=2, D is reduced from 2 to
0 by gauge invariance. One therefore expects that,
with proper handling of the overlapping divergences,
a careful analysis will show that none of the ultraviolet
divergences of the Yang-Mills theory is worse that
logarithmic, and that only a single counter term, of
the above mentioned type, is needed for each group-
invariant set of diagrams. If that is true it is then not
difficult to show that renormalization merely rescales
the structure constants c,. Mathematically, this is
equivalent to a rescaling of coordinates in the group
manifold; physically, it corresponds to a change in the
strength of the coupling of the Yang-Mills field to
itself and to other Yang-Mills-charge bearing fields.

It should be remarked that although the above
results [Egs. (5.3) and (5.6)] have been stated for the
case in which each field interacts only with itself, they
hold also when other fields bearing stress-energy or
Yang-Mills charge are present, provided the spins of
the added fields are not greater than 4 and their other
mutual interactions are renormalizable. Unfortunately,
in the case of the Yang-Mills field the ultraviolet
divergences are not the whole story; infrared difficulties
of a special type also make their appearance. These
will be discussed in Sec. 8.

In the case of gravity there are no infrared problems
beyond those which can be handled by conventional
methods. Equation (5.3), however, casts a rat.her/disma.l

“Tn the case of gnvlly additional fields of spin 1 are allowed
if they are massle
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light on the ultraviolet problem. Faced with its brutal
consequences there are several paths one may try to
follow to make life bearable. One of these is to soften
the degree of divergence by abandoning S-matrix uni-
tarity “(i.e., positive definiteness of Hilbert space)
through the introduction of field equations of the fourth
differential order. This may be accomplished by adding
terms of the form Sg”?®Rx and /'g'R,R*dx to
the Einstein action, which changes Eqgs. (5.1) and (5.3)
to

D=—4L44Y V4K =4 (5.7
»

for all diagrams of order greater than zero. Such a
procedure in effect introduces a separate unit of mass
(or length) into the theory, and if this mass is chosen
sufficiently big, the S matrix will be nearly unitary,
significant departures from unitarity occurring only
under extreme conditions, when collision energies ap-
proach that of the unit of mass.

Nevertheless, it would be nice if any breakdown in
conventional ideas which may be necessary were to
emerge from the quantized Einstein theory in its un-
mutilated form. There is already a unit of mass in the
theory: the absolute unit (¢ 16xG)"/?=3.07X10-%g
~10'® BeV, and one is loath to introduce another.
One might try to use the extra mass merely as a
regulator, in a spirit similar to that of the £-limiting
proposal of Lee and Yang's for the charged vector
boson. Equation (5.7) suggests that the regulated
theory may be renormalizable, requiring only three
counter terms, respectively, quartically, quadratically,
and logarithmically divergent. If this is so one might
attempt to let the regulator mass become infinite
after the renormalization has been performed. How-
ever, there is no guarantee that the renormalized am-
plitudes will themselves remain finite in the limit, nor
that unitarity, which is violated by the regulator, will
then be restored. If unitarity stays violated one is not
sure whether this represents a fundamental feature of
the quantized Einstein theory or is merely a conse-
quence of the regulator approach; one would be inclined
to suspect the latter. Halpern' has criticized unortho-
dox uses of regulators in handling nonrenormalizable
field theories, and has shown that they often lead to
illegal modifications of analytic properties.

If regulators are to be excluded then perturbation
theory cannot be used except in a formal way. One
must necessarily sum infinite classes of diagrams and
hope that the increasingly strong divergence of the
successive terms of the series, as expressed by Eq.
(5.3), will lead to high-energy damping and a finite
result for the total amplitude. The author has shown!’
that this hope is actually fulfilled for at least one

"1;922 Lee and C. N. Yang, Phys. Rev. 128, 885 (1962); 128,

899
1 M. B. Halj Phys. Rev. 140, B1570 (1965).
#B.'S. DeWitt, Phys, Rev. Lettors 13, 114 (1964,
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simple class of diagrams, namely, those which represent
two scalar particles exchanging gravitons in the ladder
approximation. It turns out that the “leading terms”
(i.e., the most divergent) of the Bethe-Salpeter ampli-
tude can be summed exactly, and, owing to certain
remarkable cancellations, the sum of the ladder-type
contributions to the gravitational self-energy can be
expanded in a power series in the bare mass, with no
approximations whatever. The method can also be
extended to the case of charged scalar particles, with
one or more of the graviton ladder rungs replaced by
photons, and a simple expressxon can be obtained for
the I t-order electr gy. The self-
energies and renormalization constants found in ‘this
way are all finite.

The finiteness of these quantities may be traced to
the behavior of the particle-particle scattering ampli-
tude. In the limit of very high momentum transfer the
singularity of the gravitational interaction kernel is
displaced off the light cone in coordinate space and onto
a hyperboloid lying at a distance A= (4#G/#¢*)!?=1.82
X107 cm in spacelike directions. This is roughly
equivalent to endowing the scalar particles with the
properties of hard spheres of diameter A, and may be
regarded as a manifestation of the smearing out of the
light cone due to quantum fluctuations.

Similar results have been found for spin-} electrons
by Khriplovich,'* and there seems to be no reason
why, with enough labor, they may not also be extended
to particles of higher spin, including the graviton in
interaction with itself. Thus gravity may indeed prove
to be the universal regulator which renders all field
theories finite.

It should be ked that the self:
which are obtained by summing ladder graphs appear
to correspond to “good” spectral functions, which do
a minimum of violence to unitarity. This suggests that
no illegal analytic operanons have madvenently crept
into the An imp d calcula-
tional method, which i insures analytic legality in gen-
eral, has been developed by Halpern.'* He sums first
the absorptive parts of any amplitude and then obtains
the full amplitude by a dispersion integral. The tech-
nique is applicable to gravity theory as well as to other
nonrenormalizable theories, and is amenable to N/D
approximation schemes. It is probably the safest
method currently available, but it is very complicated
to apply.

Although the finite results which have been obtained
thus far are very suggestive, one must remember that
they derive from restricted classes of diagrams. They
are therefore not y-invariant but depend on the par-
ticular gauge chosen for the internal graviton lines. So
far calculations have been restricted to those gauges.
which avoid “‘dangerous” singularities in the resulting

#1. B. Khriplovich, report, Siberian Section, Academy of
Science, USSR, Novosibirsk, 1965 (unpublished).
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integral equauons, or otherwise simplify the computa-
tional labor. It is clear that the results can give at
best only a qualitative insight into the true analytic
structure of the theory.

6. THE GRAVITATIONAL WARD IDENTITY

Although the computauonal difficulties involved in
g physical i from gravi-
dymmms are formidable, the theory has a redeeming
feature in its general covariance, which serves as a
cross check on the consistency of various calculations
and imposes constraints on the permissible forms of
various amplitudes. One of these constraints has
recently been discussed by Brout and Englert.)® These
authors derive a generalized Ward identity relating
the gravitational vertex function of a scalar particle
to the self-energy function arising from all its inter-
actions. Their derivation is easily generalized to the
case of a particle of arbitrary spin.

Denote the field of the particle by ¢*. In addition
to the funcnons R‘ (or, in expanded notation, Ry.,)
behavior
of the grav\tatlonal field (see II) we now have corre-
sponding functions R4, for ¢4. The explicit structure
of these functions may be inferred from Table I of II:

RAp=—p4 3(2,2)+Cu* s, (2,).  (6.1)

We note that R4, vanishes in the limit ¢4 — 0, and
that its functional derivative has the momentum-space
form

RAy g ——ibApp" ,+iGu4 5P, 6.2)

in which the association of momenta with indices is
P4, p'w', p"B” (p+9'+9"=0).

Let us denote the full (radiatively corrected) propa-
gator for the particle by §42. It is the sum of the bare
propagator GA2 and a function obtained by applying the
operator GAB3/5¢® twice to the vacuum-to-vacuum am-
plitude. Since the vacuum-to-vacuum amplitude is an
invariant the propagator S48, like GA2, transforms in
the manner indicated by the position of its indices.® Its
inverse must transform contragrediently:

S 48,R%+S45.cR e

=—S5"csRPa,a— S 4cR 5. (6.3)
Equation (6.3) is the gravitational Ward identity. To
get it into more familiar form one must reexpress it in
momentum space, with all the background fields set
equal to zero. In this limit S~ 45,; becomes the negative
of the gravitational vertex function, which is conven-

¥ R. Brout and F. Englert, Phys. Rev. 141, 1231 (1966). See
also K. Just and K. Rossberg, Nuovo Cimento 40, 1077 (1965).
% This will be true even if p4 s gauee group of its of its
own, provided the gauge conditions which determine
covariant. Note that the “background field” now includes ¢‘ in
addition to the metric field.
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tionally denoted by I', the particle indices being
suppressed and the index ¢ being replaced by the more
explicit uv. Making use of (6.2) and the momentum
space form of R*,, which is given in Table II of II, one
readily finds

200 ()4 =S () pu— S (B)P'w
=57 (06— S (D) g, (6.4)

where p and p’ are, respectively, the incoming and
outgoing particle momenta and ¢g=p'—p is the in-
coming graviton momentum. This, with the spin terms
involving G”, omitted is the equation given by Brout
and Englert. It holds, as a simple consequence of
general covariance, no matter how many other fields
are coupled to the field ¢4 and involved in the structure
of the vertex function.

Now introduce the vertex and wave-function renor-
malization constants Z; and Z,. They are defined by

(D) (£,0)0(P)=Zi7 0 (P} (£:9)0(0) ,

iy (6.5)
SHP=Z G D+2)], ©5)
[92(0)/0p*]pm=0,

where v,, and G are the bare vertex and propagation
functions, respectively, m is the particle rest mass,
and u(p) is a particle wave function satisfying

SPu(p)=6"1(p)u(p)=0 ©.7)
on the mass shell. From (6.6) we may infer
[351(9)/ 3p* Tyt mmt=Z57'[9G($)/ 3" Tptemt.  (6.8)

On the other hand, (6.4) yields, in the limit ' — p,

200(p,2) = pu0S(9)/ 39— nurS(p)
=S (P)Gw—GuS7(9),
whence, in virtue of (6.7),

261 (P)w (p,p)($) = p.u'(p)tas-'(»/ap']«(p),

69

(6.10)

Now, since (6.4) is a consequence snmply of genetal
covariance, it holds also if I',, and S~ are replaced by
¥w and G, respectively. Therefore we have

24t (p)vw (P 0)u(P)= puts’ (H)LIG (9)/ 09 Ju(2) , 6.11)
P=—m.

From (6.5), (6.8), and (6.11) it follows that
Z2y=2,. (6.12)

When both vertex and wave-function radiative correc-
tions are taken into account the two renormalizations
cancel, and there remains only the graviton renormali-
zation Z; arising from vacuum polarization,® which
has the effect of modifying the gravitation constant.

1 The polarization of the vacuum by a gravitational field is of
the 1 Examj plu terms to which
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The cancellation of divergences which is implied by
(6.12) applies only to the leading term of the vertex
function, in the limit §'— p, and only on the mass
shell. In order that no divergences occur in the remain-
ing terms, or off the mass shell, the interactions which
the field o4 expenences with other fields must be of
the renormali: type (or else ble to finite
values). The example of the scalar particle provides an
adequate illustration of the conditions which must be
satisfied. In this case we have?

Gl(p)=p+m?, (6.13)
Yur(#,2) =3[0t s+ 08 u— (P '+ mH]  (6.142)
=2 (p,0)— §nubm?, (6.14b)

where the index O refers to the bare mass, and we may
write

S =p+mi+2(p),
Smi=mi—met=2(—m?),
T ()= 7w 2)+ Aw(',). (6.16)

The functions Z and A are related by the Ward identity
as follows:

(6.15)

28 DT=ZEpu—Z(P)p . (6.17)

It is not hard to show that the general solution of
(6.17) is

12(p")—-2
A= M

o (But'vt po'ut30,0)
—iD:(P”)+E [CoaL™
HEP" ) (Prw—a.g),  (6.18)
where F is an arbitrary function. Therefore the graviton
vertex of a scalar particle is characterized on the mass
shell, by a single function of ¢%. This is the gravita-
uonal form factor.
duce the re lized self-
2, detmed by
() =dm+ (27— 1) (P )+ 205 (),
S(—m)=0, [d2(#)/dplymmr0.
In terms of this function Eq. (6.18) takes the form
Aw(@',0)=Zs'— 1)1 (')~ $omin,,
(") -2
HZ——— (0t s 000
-9
=3ZoZE+2() Ine
+IF -2~ 1]
X (@1e—q), (6.20)
'Equ-uon’(s .14a) is obu;ned from (2.15) by making the

gy function

(619)

it leads are mve!l:n Sec. 7.

, since #’ is here an outgoing and not an
incoming momentum.
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which suggests that we also introduce a renormalized
form factor F, defined by

Fpr @) =22 - D)+ ZF @ ). (621)
Combining (6.14b), (6.16), and (6.20) we then get

Tt p)=ZLw(?p) (6.222)
132"
=7w(#, )+——(‘°—-——P’(p.p’.+p-p’.+iquq.)
=
—EED+HEE) Inet+F 0046
X (@nw—qugs), (6.22b)

which reduces, on the mass shell, to
L' 9) =70 (8 9)+F (=%, ~ 2, @) (w00,
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magnitude of the gravitation constant G, in terms of
arbitrarily chosen (e.g., international mks) mass stand-
ards, to be determined by experiment.®

It is clear that the gravitational Ward identity is
only one of an infinity of identities, derivable from Eq.
(17.31) of II, which relate vertex functions involving
n gravitons to those involving n-1 gravitons. Such
identities become superfluous if calculations are per-
formed in coordinate space rather than in momentum
space, for then the general covariance of the theory
can be kept constantly manifest. That such calcula-
tions are actually feasible will be demonstrated in the
next section.

7. RENORMALIZATION IN COORDINATE SPACE.
CONFORMAL VACUUM FLUCTUATIONS

The chief tool for studying quantum gravidynamics
dnectly in space-nme is the theory of Green 's funcuons
1

i# The basic structural element of this

Pr=pt=—m?. (6.23)
‘The Z, factor in (6 22a) takes into account the wave- m h)'perbohc
function r arising from gy in-

sertions in the external lines.

If the scalar particle is coupled to other fields through
nonrenormalizable interactions then the functions &
and F will diverge in perturbation theory. In particular,
they will diverge if virtual gravitons are permitted to
contribute to the vertex function. Thus unless an
arbitrary cutoff is used, or someone discovers a way
to sum gravitational interactions to all orders, the
gravitational field must be allowed to act only through
the external graviton line. Although the identity (6.12)
continues to hold formally in the nonrenormalizable
case, it is then of no utility. Because of the divergence
which remains in P, Eq. (6.23) will yield an infinite
cross section for the scattering of the particle in an
external gravitational field.

In the renormalizable case £ and F are finite, and
expression (6.23) has a well-defined limit as ¢— 0,
namely,

Lu(p,0)=pupr, P=—m. (6.24)

More generally, with particles of arbitrary spin one
finds

()T (p,p)u(p) = Qr)put/2E, $'=—m, (6.25)

when the wave functions u(p) are chosen to correspond
to é-function normalization with respect to 3-momen-
tum. As Brout and Englert point out,® the universality
of (6.25) implies that the equivalence principle relating
gravitational and inertial mass holds in the quantum
theory as well as the classical theory In particular the
motion of a nonrelativistic particle in a slowly varying
gravitational field is lndependem of its mass.

If a high-energy cutoff is permitted then the Ward
identity may be applied to gravity itself, ie., to the
three-graviton vertex. In this case the wave functxon
renormalization constants Zs and Zs coincide, and Eq.
(6.12) tells us that Z;=Z;=Zs. This leaves only the

theory is the geodetic interval, denoted by 0,2 which is
defined as one half the square of the distance along the
geodesic between any two space-time points # and .
The geodetic interval is a symmetric function of » and
«' which transforms as a biscalar, ie., as a scalar
separately at x and «’. It satisfies the differential
equation®®

o=fo,0r=4ou0”, 7.1)
and the boundary condition
lim 0=~ lim 0, =gu. (1.2)

In a general Riemannian manifold ¢ is not single-
valued, except when x and x’ are sufficiently close to
one another?” The geodesics emanating from a given
point will often, beyond a certain distance, begin to
cross over one another. The locus of points at which
the onset of overlap occurs forms an envelope of the

B The necessity of measuring G disappears if absolute units are
adopted, with #=c=16xG=1. However, the masses of the ele-
mentary particles must then be measured in absolute units, which
is operationally the same thing as measuring both G and the
‘masses in mks units.
"J Hadamard, Lcclwa on Cauchy's Problem in Linear Partial
rentiol E (Yale University Press, New Haven,
Connecucut 1 23)

B, S DeWitt and R. W. Brehme, Ann. Phys. (N. Y.) 9, 220
(1960). See also J. L. Synge, Relativity: The General Thewy (North-
Holland Publishing Company, Amsterdam, 1960). Synge calls
this fnncuon the world function and denotes it by the symbol Q.

micolons denote covariant differentiation. For a scalar
this is lhe same as ordinary dnﬂerenmuon ouisa vector of length
equal to the distance along the tween % and EA tangem
o geodesic at x, and oriented in lhe direction x’ —x. 0
vector of equal lenglh, tangent to the geodesic at x, and onem:d
in the opposite direction.

#1 In some manifolds (¢.g., some compact manifolds) every paic
of points may be linked by more than one geodesic. It is alwas
possible, however, to define a single-valued function ¢ in the
neighborhood of x by starting at z md following each
emanating from x until it hits a caustic.

esic
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family of geodesics, known as a caustic surface. The
equation for the caustic surface relative to a given
point is D=0, where

D=—det(—0.u). (7.3)
D is a bidensity of unit weight at both z and 2/, which
satisfies the boundary condition

lim D=g. (7:4)
It is convenient to replace D by the biscalar
A=gnDg-i, Lim A=1, (1.5)

whose values at given points are independent of the
choice of coordinate system. By covariantly differen-
tiating Eq. (7.1), one can derive the differential
equation®

A (Ao #) =4 or o#,=4—c*(Ind),, (7.6)

which shows that A increases or decreases along each
geodesic from «’ according as the rate of divergence of
the neighboring geodesics from 2/, which is measured
by @.#,, is less than or greater than 4, the rate in flat
space-time. If the divergence rate becomes negatively
infinite a caustic surface develops and A blows up.

We sha.ll illustrate the use of o and A in the theory
of Green’s functions by the Fey prop-
agator of the sxmplest of all fields: the massless scalar
field. The defining equation is*®

810G (xa) = —8(x), @7

together with appropriate boundary conditions. The
mtroducuon of boundary conditions is most easily
d in the abstract f lism which replaces

(1.7) by
FG=-1, (7.8)
where
(7.9)
(7.10)

the |#') being exgenvectors of a commuting set of
Hermitian operators x* m a ﬁ«.tmous Hxlbert space; 2
and the p’s being
conjugate” to the 2’s. The formal solutmn of (7.8)
which incorporates the Feynman boundary conditions
is

-1

e L S —
£cg' R0

explig Fgis)ds, (1.11)

®In Eq. (7.7) G(z,') is to be understood as a biscalar and the
8 lunexlon 6(: ') as a bidensity of unit weight at z and zero
weight a

uCe, ] Schwmger, Phys. Rev. 82, 664 (1951).
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the factors g4 being inserted to insure the covariance
of operator functions.®

Taking matrix elements of (7.11) one obtains

81G(x)g =i | (xs|o/0)ds, (7.12)
o
where
(zs]#,0)= (x| expig™/Fg1ts) | #'),  (1.13)
satisfying
]
—ia—(x,slx’,0)= (x,5|2/,0),,» (7.14)
s
and the boundary condition
(2,0]20)=(x]x")=56(x,2"). (7.15)

The “Schrédinger equation” (7.14) is solved by the
ansatz

(7.16)
(7.17)

which is suggested by its known solution in flat space-
time®®

(3,512,0) = —i(4m)tDMAsteme 3 4, (i),
n=0.

a=1,

Inserting (7.16) into (7.14) and making use of (7.1)
and (7.6), one finds
@40, nan= A" (AG, ) 0,
n=1,23---. (7.18)
These recursion relations may be solved by successive
quadratures along each geodesic emanating from '
Hadamard? and Riesz* have shown that the solutions
as well as the series (7.16) converge up to the first
caustic. Formally we may write

= II [(io: putm)-ia-1 g 1FgHAYE] 1, (7.19)
=

where ip, and g~/*Fg~V/* are now to be understood as

the gradient and Laplace-Beltrami operators, respec-

tively. Setting

0
(g ptm)im / [explio, put-m)tndtm, (1.20)
and making the variable transformation
f1=n, h={y,
ta=tr—4y, =ttt (7.21)

tomta—tny, ta=Ci+fot---+ta,
# For example
(x] (§1Gg )| 2") = g | G (2,2") g "AG (2 ') dx".

3 M. Riesz, Acta Math. 81 (1949).
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we may recast (7.19) into the form

a.-j_: dl./_‘i diye+ ./_‘:l QW) - Qta)1, (7.22)

where

D)= expl i pt 1] &g epg e

Xexp(—iz pd). (1.23)
Substitution into (7.16) then yields
(x,5|,0)
= —i(4r) DA TLexpi Rs+0/25)]1, (1.24)
where
R= f Q()de, (1.25)

A
Glaw)=—oT
82

BRYCE S.
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and where the symbol T indicates that the operators
Q(#) appearing in the exponential, via (7.25), are to
be ““chronologically ordered” with respect to the pa-
rameters £.
Now the chronol 1 ordering op

with differentiation or integration with respect to the
parameter 5. Hence Eq. (7.24) may be inserted directly
into (7.12). The result is a formal generalization of a
well-known expression

12 @ /2)
G(:e,x’)=—A— T[H:’ ((2Ra))
& 2Ry

]1, (1.26)

H,® being the Hankel function of the second kind of
order 1. This formula has the series expansion

2Re  (2Ro)?
2.4 22426 ]

2Ro (2R0)?
—zi)t[}—ﬂ(l+¥)+m(l+i+&)- e

¥=0.5772---,

where the instructlions “o+i0” and *“—®—40" indicate
what is evident from (7.24), namely, that G(x,x') is
the boundary vaue of a function of ¢ and % which
is analytic in the upper-half ¢ plane and the upper-half
Ryplane. The singularity structure in o reflects the
usual behavior of the Feynman propagator on the
light cone (¢=0). The remaining singularity structure
symbolized by the logarithm of —R—i0, on the other
band, is far from simple owing to the presence of the
chronological ordering operation.

In the perturbative approach to quantum gravi-
dynamics we must deal not with the scalar propagator
(7.27) but with the vector and tensor propagators
G** and G'. However, the latter have structures
closely similar to (7.27); the only difference is that the
operators Q(f) out of which R is built are slightly
more complicated, and the “1” standing on the right
of Egs. (7.19), (7.22), (7.24), (7.26), and (7.27) is
replaced by the geodetic parallel displacement function.®
Therefore we can gain a qualitative understanding of
the renormalization program in coordinate space al-
ready by studying the scalar propagator. Moreover,
there is an interesting nonperturbative treatment of
the vacuum-to-vacuum amplitude in which the scalar
propagator itself directly enters:

Consider the Feynman functional integral,
(20.33) of 11, which may be rewritten in the form

expin¢]
=Zfexpi(s[¢+¢]—S[p]—5,‘[¢]¢‘)d¢, (7.29)

Eq.

where S is the Einstein action and ¢u=gw—1. (see

(7.28)

Table I of II). Because of the coordinate invariance
of the theory the functional integration is redundant
and ambiguous, and since no one has yet discovered
an analytically accessible nonredundant subspace for
the integration, we are forced to accept Eq. (20.12) of
II as the eﬁecnve deﬁnmon of the mtegral However,
there is an which is
easily accessible, nmely, the subspace of all conformally
equivalent geometries. One may simply set

$0=Xgu, Pwtbw=gu—1w, Ju=1+X)gw, (7.30)
and integrate over X, to obtain the partial contribution
to (0, |0, — ) arising from conformal fluctuations
in the vacuum geometry. The special interest of this
integration is that it can be performed exactly, giving
the conformal contribution to all orders of perturbation
theory. The only “fly-in the ointment” is that this is
the one contribution for which high-energy damping
cannot be expected to produce a finite cutoff. There is
no smearing out of the light cone, because conformal
metric fluctuations leave the light cone invariant.

It is easy to show that

§'? WR= (14X)g!8 WR
=31 A= 3N,

(1.31)
and hence

SCet+e]-SCel-S.Lo*
= / [t ©OF~g¥s @ R4 gha(Rw—hgw ©R)g,, Jds

=3 / £RA+X)% X4 dx. (7.32)
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The following change of variables then suggests itself:
X=¢+Hie, 14x=(HeP. (133

This change not only simplifies expression (7.32) but
at the same time guarantees the integrity of the signa-
ture of space-time. We may allow ¢ to range from -
to « without danger of 1 geo-
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Several comments are now in order. First we remark
that although the final result is divergent, the degree of
divergence is bounded. The singularity at x’=x is there-
fore not an essential one as one might have expected
on the basis of Eq. (5.3). As a matter of fact (7.39) is
identical in structure with the contributions which the
G and G of the full theory make in

metries and at the trivial cost of counting “each distinct
geometry twice at every point instead of only once.
Thus we write

exp (#tbconformal)
=2 [exp(3:[ £, brds) 8, (0.3

from which we immediately obtain

W contormat=Deontormail ¢ ]— Peontormal[0]

det (g4Gg"")
detGo

The formal determinant may be evaluated by a
variational technique with the aid of Eq. (7.11). Under
a change in the background field (7.35) suffers the
variation

W contormar= — 41 tr{gGgl5 (g 1eFgi4)]

=—%iln (7.35)

=}tr / exp(ig~V4Fg-115)5(g~UF g% ds
o

=—tistr | st expligFg ) ds, (7.36)
o

which may be immediately integrated to yield

Weontormau=—%i tr | s~ exp(ig-Fg1s)ds

-+constant. (7.37)

The trace symbol here means “integrate the diagonal
matrix element over space-time.” Hence, making use
of (7.12), (7.13), (7.16) and (7.27), we find

W eonformat= / Leontormaidz}-constant,  (7.38)
where

Leonformal

- [ s 50 =gTi0G 5 0T ms
0

1
—;[r i 2o
+[2y—In2— Fz+In(~R—i0)

+in (,+i0)]5R’} : ‘] (1.39)

2tz

lov;st perturbation order (i.e., the single closed loops
f W)

It may be conjcctured that mclusmn of the non-
conf 1 vacuum fi will i the di-
vergences altogether, and that a rough approximation
to the exact vacuum-to-vacuum amplitude can be ob-
tained simply by making the replacement o(z,x) —
$A~2 in (7.39), where A is a high-energy cutoff of the
order of unity in absolute units. The “i0” attached to
each o in (7.39) reflects the presence of unremoved

noncausal chams In passing from to W these
)magmary imals should be discarded. We ob-
tain, therefore, the estimate

w= f £'dz+constant, (7.40)

-5
—0.545- - ) ’]~ ll“_‘, (7.41)

Still cnxder aumat& of W can be obtained by
finding app: to the licated quantity .
By repeated covariant differentiation of Egs. (7.1) and
(7.6), and use of the commutation laws for the indices
thereby induced, one can show that

lim A-VEgtHEginAL2. |
ez

=lim AmEATIR p=} OR. (7.42)
This quantity raised to the nth power can be extracted
from expression (%.19) or (7.22) for a.. Moreover, it is
clear that the operator Q(¢) has the dimensions of the
curvature scalar and in the limit ' — z, is a kind of
nonlocal or mean curvature averaged over a certain

thborhood of . If we rep the purely nonlocal
part schematically by AR, we may write

QO ~ @ “R+a%), (7.43)
R ol t WR+AR. (1.44)

The crudest approximation to £’ is then obtained

#The manifestly covariant occumnce of three distinct types
of divergences: quartic, quadratic, and logarithmic, already in
lowest order, implies that the conjecture of Brout and Englert
(Ref. 19) that quantum gravidynamics is conventionally re-
normalizable is unfounded.
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simply by omitting AR altogether:

A (AR » 12 WRA- LI [3):d
£/~ gt —— —_—
£ 481-'g 2881-’3

— WR— i
X[ln(————o)—o.$45~ . ] )
6A?

Expression (7.45) is prototypical of the contributions
which all fields make to the geometrical part of the
vacuum-to-vacuum amplitude. (The only deviations
from it occur with massive fields, for which } ¥R gets
replaced by —m?+4 'R, and with fermion fields, for
which the sign of each term is reversed.) These con-
tributions originate in the vacuum polanzanon which
the background geometry induces, and g\ve rise to
nonobservable ions as well as physicall
real radiative corrections.

The first term in (7.45) is a “cosmological” term
representing the zero-point vacuum energy which every
field, including the gravitational field itself, possesses.
It is eliminated by redefining the zero point.

The second term in (7.45) renormalizes the gravita-
tional interaction strength. The relation between the
renormalized and “bare” gravitation constants (G and
G, respectively) is

G=2Go, (7.46)
Z~ (14 A/482%)1. (7.47)

In the theory of the pure gravitational field Z is the
only renormalization constant which occurs (provided,
of course, the exact theory is really ﬁmte) Because of
the manifest covariance of (7.45) it is clear that the
same renormalization applies to all vertex functions
no matter how many graviton prongs they possess. No
Ward identity is needed.

The third term in (7.45) is the only one having
observable physical consequences® In the classical
limit of long wavelengths and large coherent ampli-
tudes it may be regarded as a correction to the Einstein
Lagrangian. Hill* has applied such a correction term
to the problem of gravitational collapse of the Fried-
mann universe, with encouraging results. He finds that
if the sign of the coefficient in front is negative, as
would be the case for the contribution from a fermion
field, this term succeeds in turning the collapse cycle
around before infinite curvature is reached? It may
be objected that in applying the correction to the
Friedmann model one violates the boundary conditiens
of asymptotic flatness which were assumed to get it
in the first place. However, vacuum polarization is

# The nonlocal part of the A* term, whlch has been omitted
lwm (7 45), llso has observable con
W. Hill, Ph.D. thesis, Umvemly of Nort.h Carolina, 1965
(unpubhshed)

 Not, however, until a density of the order of unity in absolute
units is reached. ‘At this density all the matter in the visible
uriverse has been compressed to a region the size of a nucleon.
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basically a local ph and global conditi
should have little relevance here,

8. THE INFRARED PROBLEM

The most important contributors to the gravita-
tional polarization of the vacuum, and to the modi-
fications in Einstein’s equations which this polariza-
tion produces, are the massless fields, including gravity
itself. These are also the fields which most readily
yield real quanta. The effect of real quantum produc-
tion on the vacuum-to-vacuum amplitude is taken into
account by the “—i0” attached to —% in the logarithm
of (7.41). Owing to the complexity of R, however, the
branch-point behavior of the logarithm is very in-
volved, and it is not easy to investigate directly in-
coordinate space whether or not serious infrared diffi-
culties lie hidden in this expression.

In a closed finite world such difficulties cannot arise
since there is a natural low-energy cutoff; troubles
occur only in infinite worlds. Let us for simplicity
confine our attention to flat backgrounds.® It is then
appropriate to revert to momentum space to study
the problem. The analysis for this case is straight-
forward and has been carried cut by Weinberg;¥” we
shall summarize his results.

The amplitude for a single soft graviton to be pro-
duced in a given process has already been derived
[Eq. (4.6)]. The corresponding amplitude for the
emission of NV soft gravitons in all possible ways from
a given diagram is just the product of N single-graviton
amplitudes. The form of these amplitudes is such that
an infrared divergence arises in the computation of the
rate at which any physical process takes place when
arbitrary numbers of soft gravitons having total energy
less than E are simultaneously emitted. This divergence
disappears if the contributions from virtual soft gravi-
tons are also included. Weinberg shows that the correct
total rate is given by an expression of the form

T(E)=To(E/A)?b(B), @&.1)
1 ® sing 1 giue.

b(B)=- -—-exp(B —dw)du (82)

=1—FrBt- -, (83)

where T is the rate without graviton emission and A
is a parameter marking the dividing line between
“soft” and “hard” virtual gravitons. If A is chosen to
be of the order of the typical energies involved in the
physical process, Eq. (8.1) gives a fair estimate of the
rigorous value which would be obtained for I'(E) if the
contributions from ultraviolet virtual gravitons were
also included and appropriate renormalizations per-
formed. The soft gravitons make appreciable contribu-
tions only if attached to the external lines of the Iy

3 Conclusions reached for lhls J)resumxbly valid also

tries.

for infnite worlds having ot
W cabers: Doy, v 140, 576 1008
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diagrams, and hence the only radiative corrections
which should be included in T are those which involve
internal lines and vertices. The quantity B is given by

G 14+ 0am’  Dalmatt; 1+ Vam
Syt PP (84)
21 ™ (1= nm 1—9m
(1= (mntmon/ pa- pm) T (8.5

it depends only on the parameters of the external lines.

These results are completely standard. Except for
the detailed form of the quantity B they are identical
with the corresponding results in quantum electro-
dynamics. The question which now must be asked is:
What happens when emission takes place from particles
which are themselves massless? In quantum electro-
dynamics such emission is known to give rise to a new
and more serious kind of infrared divergence which
cannot be removed in any simple or completely natural
way. This circumstance has been invoked as the
“reason” why massless charged particles do not occur
in Nature. In the case of the Yang-Mills and gravita-
tional fields the difficulty presents itself in a peculiarly
acute form since these fields are themselves both
massless and “charged.” Moreover, although there is
no experimental evidence for the existence of the Yang-
Mills field, gravity is an established fact, as is also its
interaction with photons.

Since the Yang-Mills field is a vector field its diverg-
ence difficulties are similar to those of massless electro-
dynamics and hence are difficult if not impossible to
remove. Because of the noncommutativity of the emis-
sion vertices for Yang-Mills quanta it is not possible
to sum the effect of arbitrary numbers of real and
virtual quanta into a closed expression like (8.1).
Moreover, the situation is further complicated by the
fact that there is a non-negligible amplitude for the
soft quanta themselves to emit soft quanta. However,
there is no evidence whatever that the situation would
improve if one could find a way to take all these extra
complications rigorously into account.

In the case of the grav:tauonal ﬁeld on the other
hand, the difficul . This
happy state of affairs is 2 consequence of the detailed
structure of expression (8.4), which in turn derives
from the special form of the graviton emission vertex:
Touw — pupy as ¢— 0. We shall now show how it comes
about.

Let us use indices from the first part of the alphabet
to distinguish the massless particles from the others.
We shall continue to use the symbols m,, m, etc. but
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which permits (8.4) to be decomposed as follows:
B=—(2G/7) L nanspa: poIn(—2pa" ps)

= (4G/7) T nanmpa: pm In(—2pa" pm/mm)

G 1+ 0nm?  Dalmtatm  1400m
Ly T e
2 mn (1=0am?)'?  Vnm 1—tam

+(2G/x) X‘ Nanvpa: pb In(mams)
+(4G/m) L nanmpa’ pmInma.  (8.7)

With the aid of the energy-momentum conservation
law

T napat L mmpm=0, (8.8)

the last two terms of (8.7) may be combined into
(2G/m)Lnanspa ps (inms—Inm,),

which vanishes by symmetry. The masses m,, m; thus
disappear from (8.7), and since pa-psIn(—2pq-ps)
vanishes when either a=5 or p, is parallel to ps, it is
evident that B is complelely free of divergences.

The only uncertainty which remains in Weinberg’s
analysis, and which he himself points out, concerns his
use of the DeDonder gauge for the virtual gravitons.
Except when the stress-energy tensor is conserved at
each virtual graviton vertex it is not easy to see that
the choice of gauge is immaterial. But stress-energy
conservation of this simple type holds only when the
particle lines on both sides of the vertex are on the mass
shell. [See Eq. (3.8)]. Since only the external lines
satisfy this condition Weinberg must appeal to the fact
that the other lines are only slightly off the mass shell
and hence violate the conservation conditions only
minimally.®®

Weinberg’s act of faith on this question can be
rigorously justified within the framework of the com-
plete theory developed in II. We known from this
theory that the choice of gauge for internal lines is
irrelevant provided: (a) it is applied consistently and
(b) all diagrams contributing to a given process are
included. Now Weinberg omits the diagrams which in-
volve infrared fictitious quanta. But it is not hard to
show that the contributions of these diagrams all vanish
as the infrared momenta go to zero, and hence may be

lected. This is a of the fact that the

with the understanding that these masses
tend to zero. We may then write

1+va?  namemams  1+vap
Tl T TR,
(=2} vap 1—va

2pa-
M) )
Mmamsy

—4nanpa’ pr ln(—

fictitious quanta always occur in closed loops containing
uniformly oriented vertices V (ai)s. Because of the special

#1In electrodynamics it is not difficult to show that gauge
invariance holds when every vertex along each charged particle
line is taken into account. In gravidynamics, however, every line
is icharged,” and the “charger splits up or recombiaes at svers
vertex.
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form (2.8) which these vertices possess, the uniform
orientation guarantees that at least one of the vertices
in each infrared loop is proportional to an infrared
momentum.
Wc conclude this secnon by repeatmg Weinberg’s
ion of Bin the ic limit and correct-
ing a minor mistake in his result. The quantity vam? is
first expanded in the form

Ynmt= (Vam Vo e Va2V 2 (Va4 Vol V- Vi
=3(VarVam) oo, (89)
where va= pa/E,. This expansion is then inserted into
1+vam? 1+0nm

(1=van2)12

NlmMntlim,
——In
Unm 1=Vam

1 63
= 2vr-n..m,m.(l+—-v.,..’+—v.,,,‘+ . ) (8.10)
6 40,

to obtain a lengthy expression for B correct to the

BRYCE S.
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fourth order in the velocities. This expression can be
greatly simplified with the aid of the energy-momentum
conservation laws

Z anma(143vattfvatt - )=0
= aamaVa(1+vai4--)=0
and one finally obtains the compact formula
B=(4G/5r) tr(Ad?Q/dP)?,
where Ad?Q/df is the dyadic previously defined by

Egs. (4.11) and (4.12), having the explicit traceless
form!

(8.11)

APQ/dB=Y nama(Vava—3lva?). (8.12)

® By inadvertently dropping a term Weinberg obtains a
dyadic which is not traceless.
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The statistical properties of systems of coupled quantum-mechanical harmonic oscillators are analyzed,
The Hamiltonian for the system is assumed to be an inhomogeneous quadratic form in the creation and
annihilation operators, and is allowed to have an explicit time dependence. The relationship to classical
theory is emphasized by expressing pure states in terms of the coherent-state vectors, and density operators
by means of the P representation and an analogous representation involving the Wigner function. The
state which evolves from an initially coherent state of thy is found, and equati ing the time
evolution of the Wigner function and the weight function for the P representation are derived, in differential
and integral form, for arbitrary initial states of the system. The results remain valid for couplings which do
not preserve the vacuum state, and for cases in which the time dependence of the coupling parameters gives
rise to large-scale amplification of the initial field mtenmm The analysis is performed by first treating

n the oscnllator variables, and then specializing to

general linear i canonical
resont th

lutions for the terms of their

the case in which these

initial values. The results are ulmmled wnthln the context of a model of pammtnc amplification.

1. INTRODUCTION

l M 1 wide variety of physical processes, all of the dy-

namical elements which enter into the description
of the state of the system may be treated formally as
quantum-machanical harmonic-oscillator modes. The
coupling between the modes typically takes the form of
a quadratic expression in the annihilation and creation
operators a;(!) and g;'(f), in which the coupling param-
eters are time-dependent in the general case. In addition,
driving terms linear in the oscillator variables may be
presenit. The operators a;(f) and a,'() then obey linear
inhomogeneous equations of motion, and the solutions
m (hcse equations take the same form as the so]uuons
ber complex amplitudes in the B

- n.nional Science Foundation postdoctoral fellow.

classical system. The time-dependent expectation values
of dynamical operators for a given initial state of the
system may be evaluated stralghtiorwa.rdly with the
2id of the solutions to the mo-
tion and the commutation relations for a; and a,!, and
some indication is thereby provided of the way in which

fluctuations influence the time d P of
the oscillator system.!™®

‘R, Serber and C. H. Townes, in Quantum Electronics—A
'ymposium, edited by C. H. Townes (Columbia University Press,
New York 1960) 33.
ell A Yariv, and A. E. Siegman, Phys. Rev. 124,
!646 (I

e Bous and 7. A. Mullen, Phys. Rev. 128, 2407 (1962).

+7.P. Gordon, W. H. Louisell, and L. R. Walker, Phys. Rev.
129, 481 (1963).

3] P, Gerdon, L. R. Walker, and W. H. Louisell, Phys. Rev
130, 806,_(1963)
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